Development of Fourier transform infrared spectrophotometric method for identification and determination of marketed metamizole tablet preparation



Metamizole is a nonsteroidal antiinflammatory drug (NSAID) that functions as an analgesic, antipyretic, and antiinflammatory. Examination of active substance contents is a requirement that must be met to ensure the quality of drug preparations. The aims of this study were to develop and validate the Fourier Transform Infrared spectrophotometric method for the quantitation of metamizole content in marketed tablet preparation. Identification and determination of metamizole contents by Fourier Transform Infrared spectrophotometric method used methanol solvent in the wavenumber range 4000 cm–1 to 650 cm–1. The results showed that the specific wavenumbers of metamizole were 1649.3 cm–1; 1623.3 cm–1; and 1589.7 cm–1; and the contents metamizole in marketed tablet preparation ranged from (97.954 ± 0.121)% to (104.541 ± 0.257)%. From the validation method, the recovery result is 100.129%; the relative standard deviation is 0.057%; the limit of detection is 2.09526 mg/mL; the limit of quantitation is 6.34928 mg/mL; and the range 40 mg/mL to 60 mg/mL. The quantitation of metamizole contents can be carried out by Fourier Transform Infrared spectrophotometric method with accurate and precise quantitation results.


Fourier Transform Infrared; spectrophotometric; identification; determination; metamizole

Full Text:



Miljkovic, M.; Dragojevic-Simic, V.; Rancic, N.; Simic, R.; Pekez-Pavlisko, T.; Kovacevic, A.; and Stamenkovic, D. 2018. Metamizole Utilization and Expenditure During 6 Year Period - Serbia versus Croatia. Front. Public Health. 6 213.

Cazacu, I.; Mogosan, C.; and Loghin, F. 2015. Safety Issues of Current Analgesics - an Update. Clujul Med. 88(2) 128-136.

Gouveia, B.G; Rijo, P.; Gonçalo, T.S.; and Reis, C.P. 2015. Good Manufacturing Practices for Medicinal Products for Human Use. J. Pharm. Bioallied Sci. 7(2) 87-96.

Taylor, D. 2015. The Pharmaceutical Industry and the Future of Drug Development. Pharmaceuticals in the Environment. 1st Ed. Vol 41. (Cambridge: RSC Publisher) 1-33.

Baker, M.J.; Trevisan, J.; Bassan, P.; Bhargava, R.; Butler, H.J.; Dorling, K.M.; Fielden, P.R.; Fogarty, S.W.; Fullwood, N.J.; Heys, K.A.; Hughes, C.; Lasch, P.; Martin-Hirsch, P.L.; Obinaju, B.; Sockalingum, G.D.; Sulé-Suso, J.; Strong, R.J.; Walsh, M.J.; Wood, B.R.; Gardner, P.; and Martin, F.L. 2014. Using Fourier transform IR Spectroscopy to Analyze Biological Materials. Nat. Protoc. 9(8) 1771-1791.

Fritzsche, A.; Ritschel, T.; Schneider, L.; and Totsche, K.U. 2019. Identification and Quantification of Single Constituents in Groundwater with Fourier Transform Infrared Spectroscopy and Positive Matrix Factorization. Vib. Spec. 100 152-158.

Ouhaddouch, H.; Cheikh, A.; Idrissi, M.O.B.; Draoui, M.; and Bouatia, M. 2019. FTIR Spectroscopy Applied for Identification of a Mineral Drug Substance in Drug Products: Application to Bentonite. J. Spec. 2019 2960845

Robaina, N.F.; de Paula, C.E.R.; Brum, D.M.; de la Guardia, M.; Garrigues, S.; Cassella, R.J. 2013. Novel Approach for the Determination of Azithromycin in Pharmaceutical Formulation by Fourier Transform Infrared Spectrophotometric in Film through Transmission Mode. Microchem. J. 110 (2013): 301-307.

Maggadani, B.; Oktaviani, E.; Harahap, Y.; and Harmita, H. 2020. Optimization and Validation of an Analytical Method for Tranexamic Acid in Whitening Creams by RP HPLC with Precolumn Derivatization. Int. J. App. Pharm. 12(1) 167-171.

Moffat, A.C.; Osselton, M.D.; and Widdop, B. 2011. Clarke’s Analysis of Drugs and Poisons in Pharmaceuticals, Body Fluids and Postmortem Material. 4th Ed. (Noida: Pharmaceutical Press) 1279-1280.

Balan, V.; Mihai, C-T.; Cojocaru, F-D.; Uritu, C-M.; Dodi, G.; Botezat, D.; and Gardikiotis, I. 2019. Vibrational Spectroscopy Fingerprinting in Medicine: from Molecular to Clinical Practice. Materials. 12 2884

Fanelli, S.; Zimmermann, A.; Toto´li, E.G.; and Salgado, H.R.N. 2018. FTIR Spectrophotometry as a Green Tool for Quantitative Analysis of Drugs: Practical Application to Amoxicillin. J. Chem. 2018 3920810

da Silva, H.R.G.; Quintella C.M.; and Meira, M. 2017. Separation and Identification of Functional Groups of Molecules Responsible for Fluorescence of Biodiesel Using FTIR Spectroscopy and Principal Component Analysis. J. Braz. Chem. Soc. 28(12) 2348-2356.

Kumirska, J.; Czerwicka, M.; Kaczyński, Z.; Bychowska, A.; Brzozowski, K.; Thöming, J.; and Stepnowski, P. 2010. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan. Mar. Drugs. 8(5), 1567-1636

Rohman, A. 2012. Application of Fourier Transform Infrared Spectroscopy for Quality Control of Pharmaceutical Products - A Review. Indonesian J. Pharm. 23(1) 1-8

Asuero, A.G.; Sayago, A.; and Gonzalez, A.G. 2006. The Correlation Coefficient - An Overview. Critical Reviews in Analytical Chemistry, 36:41-59.

Veronin, M.A.; Nutan, M.T.; and Dodla, U.K.R. 2014. Quantification of Active Pharmaceutical Ingredient and Impurities in Sildenafil Citrate obtained from the Internet. Ther. Adv. Drug Saf. 5(5) 180-189

Le, T.H.H.; Phung, T.H.; and Le, D.C. 2019. Development and Validation of an HPLC Method for Simultaneous Assay of Potassium Guaiacolsulfonate and Sodium Benzoate in Pediatric Oral Powder. J. Anal. Methods Chem. 2019 6143061

Le, D.C.; Ngo, T.D.; and Le, T.H.H. 2019. Simultaneous Assay of Dexchlorpheniramine Maleate, Betamethasone, and Sodium Benzoate in Syrup by a Reliable and Robust HPLC Method. J. Anal. Methods Chem. 2019 2952075

Setyawati, A. 2019. Analysis Methods Verification of Boron in River Water Using the UV-Vis Spectrophotometer with Curcumin Complex as Alternative Practical Educations. Int. J. Chem. Ed. Res. 3(2) 60-65.



  • There are currently no refbacks.

Indexed and harvested by:


©2001 Jurnal Natural (JN), Indonesia, Banda Aceh: | eISSN 2541-4062 | pISSN 1411-8513 | Contact: JN site and its metadata are licensed under CC BY