KERAGAMAN SOMA KLONAL PADA KRISAN (Dendranthema grandiflora Tzvelev) SE CARA IN VITRO DENGAN MENG GUNA N KOLKISIN

Variation of Soma clonal on Krisan (Dendranthema grandiflora Tzvelev) by In Vitro With Colkis in Applications

Nilahayati
Staf Pengajar Jurusan Agronomi Fakultas Pertanian Unimal, Lhokseumawe

ABSTRACT

The purpose of this research induced somaclonal variation in four Chrysanthemum (Dendranthema grandiflora Tzvelev) cultivars by using colchicine through in vitro culture. The research design was factorial completely randomized design with ten replications. The first factor consisted of four Chrysanthemum cultivars namely Fiji White, Puma Putih, Fiji Dark and Stroika. The second factor comprised of six level treatment of colchicine concentrations i.e. 0, 0.01, 0.025, 0.05, 0.075 and 0.1% w/v. The result showed that the growth of plantlet after treatment of colchicine much slower than control. The treatment of colchicine was reducing the shoot initiation, plantlet height, number of leaves and nodes, number of roots and roots length but increased leaf chlorophyll content.

Keywords : colchicine, Dendranthema grandiflora, in vitro, somaclonal variation

PENDAHULUAN

Krisan (Dendranthema grandiflora Tzvelev) merupakan tanaman hias yang sangat populer di Indonesia dan memiliki nilai ekonomi yang relatif tinggi. Krisan digemari karena memiliki bunga yang indah, warna dan bentuk yang beragam, mudah dirangkai dan memiliki periode kesegaran bunga yang panjang sehingga tidak cepat layu ketika disimpan dalam jambangan. Secara umum selera konsumen akan bunga lebih tertarik pada jenis-jenis baru yang langka dan mempunyai daya tarik estetika pada penampilannya. Oleh karena itu, maka usaha-usaha perbaikan tanaman bunga diarahkan pada pengadaan kultivar-kultivar baru dengan bunga lebih cerah dan menarik, bentuk bunga yang lebih indah serta sifat-sifat lain seperti daya tahan hidup bunga, resistensi terhadap penyakit dan toleran terhadap berbagai stres.

Untuk memperoleh kultivar-kultivar baru perlu dilakukan usaha untuk meningkatkan keragaman genetiknya. Hal ini dapat dilakukan dengan mengintroduksi kultivar baru dari luar dan dengan teknik pemuliaan yaitu dengan menyilangkan kultivar yang sudah ada. Selain itu untuk meningkatkan keragaman genetik tanaman krisan dapat dilakukan melalui induksi keragaman somaklonal dengan teknik kultur jaringan.

dan waxflower (Yan 2001). Dalam penelitian ini dilakukan usaha mendapatkan keragaman genetik pada beberapa kultivar krisan yang diinduksi oleh kolkisin secara in vitro.

Penelitian ini bertujuan mengetahui pengaruh konsentrasi kolkisin dan kultivar terhadap keragaman somaklonal krisan secara in vitro serta untuk mengetahui interaksi antara konsentrasi kolkisin dan kultivar terhadap keragaman somaklonal krisan secara in vitro.

Hipotesis penelitian ini adalah terdapat satu kultivar terbaik yang menghasilkan keragaman somaklonal, konsentrasi kolkisin yang tepat akan menginduksi keragaman somaklonal serta diperoleh interaksi terbaik antara kultivar dengan konsentrasi kolkisin dalam menginduksi keragaman somaklonal.

METODE PENELITIAN

Penelitian ini menggunakan rancangan acak lengkap faktorial. Faktor yang diteliti ada dua yaitu kultivar dan konsentrasi kolkisin. Faktor pertama adalah kultivar yang terdiri dari empat yaitu Fiji White (V1), Puma Putih (V2), Fiji Dark (V3) dan Strwka (V4). Faktor kedua adalah konsentrasi kolkisin terdiri dari lima yaitu 0%, 0.01%, 0.02%, 0.025%, 0.05%, 0.1%, 0.25%, 0.625%, 1.25%, 1.875%, dan 2.5%.

Perlakuan tersebut terdiri atas 24 kombinasi perlakuan. Masing-masing perlakuan diulang 10 kali sehingga terdapat 240 satuan percobaan. Uji statistik yang digunakan adalah analisis ragam dengan uji lanjut Uji Wilayah Berganda Duncan (DMRT) pada taraf 5%.

Pelaksanaan Penelitian

Sterilisasi Alat

Alat tanam dan cawan petri yang sudah dicuci bersih dibungkus dengan kertas dan botol kultur yang telah dicuci bersih
disterilkkan dengan menggunakan autoclave selama 1 jam dengan suhu 121°C pada tekanan 17,5 psi. Permukaan Laminar air flow cabinet sebelum digunakan disterilkan dengan menyemprotkan alkohol dan dibersihkan dengan tissue.

Semua alat yang akan digunakan disemprotkan dengan alkohol terlebih dahulu sebelum dimasukkan kedalam laminar. Pada saat penanaman, alat tanam direndam dengan alkohol 96% dan dibakar diatas api lampion spiritus beberapa saat agar tetap steril.

Pembuatan Media

Untuk meregenerasi tanaman dalam penelitian ini dipergunakan media Murashige dan Skoog (MS) yang dimodifikasi dengan penambahan zat pengatur tumbuh IAA 0,2 ppm dan BAP 1 ppm. Pembuatan media menggunakan larutan-larutan stok MS dengan cara memipet sesuai volume yang dibutuhkan. Ditambahkan dengan zat pengatur tumbuh IAA 0,2 ppm dan BAP 2 ppm serta gula 30 g/l. Kemudian campuran larutan tersebut ditambah dengan menambahkan aquades menjadi 1 liter dengan labu takar. Selanjutnya diukur pH media dengan menggunakan pH meter menjadi 5,6-5,8 (diatur dengan HCl/KOH 0,1N). Kedalam media dimasukkan 7 g agar-agar, kemudian dididihkan diatas kompor gas. Setelah mendidih, media dimasukkan ke dalam botol-botol kultur steril sebanyak 20 ml. Botol tersebut ditutup dengan plastik menggunakan karet dan disterilkan dalam autoclave dengan suhu 121°C dan tekanan 17,5 psi selama 30 menit.

Sterilisasi Bahan Tanaman

Bahan tanaman yang digunakan berasal dari lapang, sehingga perlu disterilkan terlebih dahulu. Sterilasi bahan tanaman terdiri dari dua tahap yaitu sterilisasi diluar laminar dan didalam laminar. Sterilisasi di luar laminar yaitu pucuk tanaman dibuang daunnya dan dipotong sepanjang 4 cm, kemudian dicuci bersih dengan menggunakan detergen dan diibrikan dalam air mengalir selama 30 menit. Selanjutnya bahan tanaman tersebut direndam di dalam agrimycin 2,5g L⁻¹ dan dithane 2 g L⁻¹

Agrista Vol. 11 No. 1, 2007
selama 1 jam. Setelah itu dibiarkan di bawah air mengalir selama 30 menit.

Sterilisasi di dalam laminar yaitu bahan tanaman tadi dimasukkan kedalam botol yang ditutup rapat. Kemudian dimasukkan ke dalam laminar dan siap untuk disterilkan. Bahan tanaman tersebut direndam alkohol 70% selama 3 menit dan selanjutnya direndam dalam larutan clorox 10% selama 5 menit. Kemudian dipotong batang bagian bawahnya menggunakan scalpel dan pinset, lalu dibilas dengan air steril sebanyak dua kali. Setelah itu direndam dalam larutan clorox 5% selama 5 menit. Kemudian dibilas dengan menggunakan air steril sebanyak tiga kali. Disiapkan cawan petri dengan menambahkan air steril dan bedadine secukupnya. Bahan tanaman tersebut ditanam ke dalam media MS selama 7 hari untuk prekondisi, jika tidak ada kontaminasi dipindahkan pada media MS dengan IAA 0,2 ppm dan BAP 1 ppm. Penanaman dilakukan didalam laminar dengan menggunakan peralatan tanam yang steril untuk mencegah terjadinya kontaminasi.

Penggunaan kolkisin sebagai mutagen

Setelah pucuk ditanam dan dibiarkan selama 2 bulan untuk pertumbuhan tunas, tanaman steril siap untuk diberi perlakuan kolkisin dengan konsentrasi 0,0% (~0.0 mM), 0,01% (~0.025 mM), 0,025% (~0.625 mM), 0,05% (~1.25 mM), 0,075% (~1.875 mM), dan 0,1% (~2.50 mM). Penanaman dilakukan dengan cara memisahkan tunas tunas krisan didalam cawan petri. Tunas tunas krisan tersebut dimasukkan kedalam larutan kolkisin dengan konsentrasi sesuai dengan perlakuan dan direndam selama 24 jam. Kemudian dibilas terlebih dahulu dengan aquades steril. Penanaman dilakukan secara bersamaan dalam satu hari. Setiap botol berisi dua eksplan. Botol botol yang telah ditanami kemudian disimpan pada rak didalam ruang kultur yang bertemperatur 25-28°C dan dengan penyinaran lampu TL terus-menerus.

Pengamatan

Variabel respon yang diamati meliputi: waktu munculnya tunas, jumlah tunas, tinggi tunas, jumlah daun, buku, akar, dan panjang akar.

HASIL DAN PEMBAHASAN

Hasil yang diperoleh menunjukkan bahwa kultivar berpengaruh nyata terhadap waktu muncul tunas krisan yang diuji (Tabel 1). Kultivar Fiji white dan Fiji Dark memperlihatkan bahwa tunas sudah muncul pada 3,3 dan 3,5 minggu setelah tanam sedangkan Puma Putih dan Stroika baru muncul tunas berturut-turut setelah 4,1 dan 4,2 minggu setelah tanam.

Pada tanaman kontrol memperlihatkan bahwa tunas sudah muncul pada 1,5 minggu setelah tanam sedangkan tanaman yang diberikan perlakuan dengan kolkisin tunas baru muncul setelah 3,9 sampai 4,5 MST (Tabel 2). Semakin tinggi konsentrasi kolkisin maka waktu munculnya tunas juga menjadi lebih lama. Konsentrasi kolkisin yang tinggi berbahaya bagi kultur jaringan tanaman karena meningkatkan ratio kematian dan menghambat proliferasi.

Tabel 1. Pengaruh kultivar terhadap waktu munculnya tunas

<table>
<thead>
<tr>
<th>Kultivar</th>
<th>Waktu (Minggu Setelah Tanam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiji White</td>
<td>3,36 b</td>
</tr>
<tr>
<td>Puma Putih</td>
<td>4,10 a</td>
</tr>
<tr>
<td>Fiji Red</td>
<td>3,50 b</td>
</tr>
<tr>
<td>Stroika</td>
<td>4,20 a</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti huruf yang sama berbeda tidak nyata (Uji DMRT 0,05)

Tabel 2. Pengaruh kolkisin terhadap waktu munculnya tunas

<table>
<thead>
<tr>
<th>Kolkisin (%)</th>
<th>Waktu (Minggu Setelah Tanam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,5 d</td>
</tr>
<tr>
<td>0,01</td>
<td>3,9 e</td>
</tr>
<tr>
<td>0,025</td>
<td>4,2 abc</td>
</tr>
<tr>
<td>0,050</td>
<td>4,1 bc</td>
</tr>
<tr>
<td>0,075</td>
<td>4,4 ab</td>
</tr>
<tr>
<td>0,1</td>
<td>4,5 a</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti huruf yang sama berbeda tidak nyata (Uji DMRT 0,05)

Kultivar berpengaruh nyata terhadap rata-rata pertumbuhan jumlah tunas krisan pada 7 MST (Tabel 3). Jumlah tunas tertinggi terdapat pada kultivar Fiji White, sedangkan ketiga kultivar lainnya yaitu Puma Putih, Fiji Dark dan Stroika memiliki jumlah tunas yang tidak berbeda nyata. Pemberian kolkisin tidak berpengaruh nyata terhadap jumlah tunas krisan secara in vitro pada 7 MST. Nilai rata-rata jumlah tunas tertinggi terdapat pada perlakuan 0,05% kolkisin yaitu 1,70 tunas sedang jumlah tunas terendah terdapat pada perlakuan kolkisin 0,075% dan kontrol yaitu 1,25 tunas pada 7 MST. Pada awal pertumbuhan planlet yang diberi perlakuan kolkisin mengalami penghambatan pertumbuhan tunas, hal ini diduga pemberian kolkisin tersebut terjadi kerusakan yang menyebabkan perubahan fisiologis sehingga sel-sel dalam tanaman belum mampu membentuk tunas pada awal pertumbuhannya. Setelah dapat menetralisir zat racun tersebut baru sel-sel yang mampu bertahan dapat berdiferensiasi membentuk tunas kembali. Menurut Dwiningsih (2004), perlakuan kolkisin secara in vitro menyebabkan pertumbuhan tunas jahe emprit terhambat. Semakin besar konsentrasi yang diberikan maka semakin kecil jumlah tunas yang muncul.

Hasil analisis ragam menunjukkan bahwa perlakuan kultivar berpengaruh nyata terhadap tinggi tunas krisan (Tabel 3). Tunas tertinggi terdapat pada kultivar Fiji White yaitu 7,22 cm sedangkan tinggi tunas terendah terdapat pada kultivar Stroika yaitu 3,87 cm pada 7 MST. Pada Tabel 4 menunjukkan bahwa pemberian kolkisin secara nyata menghambat pertumbuhan tinggi tunas krisan secara in vitro. Tunas tertinggi terdapat pada kontrol yaitu 9 cm sedangkan tunas terendah terdapat pada konsentrasi kolkisin 0,1% yaitu 3,70 cm pada 7 MST. Menurut Poepodarsono (1988), salah satu ciri tanaman poliploid adalah laju pertumbuhannya yang lebih lambat dari tanaman diploid.

Hasil analisis ragam menunjukkan bahwa perlakuan kultivar berpengaruh nyata terhadap jumlah buku tanaman krisan secara in vitro (Tabel 3). Kultivar yang memiliki jumlah buku terbanyak terdapat pada kultivar Fiji Dark yang tidak berbeda

<table>
<thead>
<tr>
<th>Kultivar</th>
<th>Jumlah Tunas</th>
<th>Tinggi Tunas</th>
<th>Jumlah Daun</th>
<th>Jumlah Buku</th>
<th>Jumlah Akar</th>
<th>Panjang Akar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiji White</td>
<td>2,23 (1,59) a</td>
<td>7,22 (2,70) a</td>
<td>9,40 (3,09) a</td>
<td>7,26 (2,73) a</td>
<td>0,70 (0,96) d</td>
<td>0,75 (0,97) c</td>
</tr>
<tr>
<td>Puma Putih</td>
<td>1,23 (1,30) b</td>
<td>4,27 (2,10) a</td>
<td>8,33 (2,91) a</td>
<td>5,73 (2,44) b</td>
<td>8,93 (2,90) a</td>
<td>2,88 (1,77) a</td>
</tr>
<tr>
<td>Fiji Red</td>
<td>1,00 (1,25) a</td>
<td>6,75 (2,65) b</td>
<td>9,43 (3,12) a</td>
<td>7,86 (2,86) a</td>
<td>2,93 (1,69) c</td>
<td>2,96 (1,62) ab</td>
</tr>
<tr>
<td>Stroika</td>
<td>1,00 (1,22) b</td>
<td>3,87 (2,03) b</td>
<td>7,00 (2,68) b</td>
<td>4,90 (2,25) b</td>
<td>6,80 (2,50) b</td>
<td>1,81 (1,47) b</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf yang sama pada kolom yang sama tidak berbeda nyata (Uji DMR 0,05). Data dalam kurung adalah hasil transformasi dengan rumus √(x+0,5). ** berbeda sangat nyata

Agrista Vol. 11 No. 1, 2007 39
nyata dengan Fiji White. Jumlah buku terendah terdapat pada kultivar stroika yang tidak berbeda nyata dengan Puma Putih. Perlakuan konsentrasi kolkisin berpengaruh nyata terhadap rata-rata jumlah buku krisan secara in vitro (Tabel 4). Jumlah buku yang paling banyak terdapat pada perlakuan kontrol yaitu 9,80 buku sedangkan yang paling rendah pada perlakuan dengan konsentrasi kolkisin 0,075 dan 0,1% berturut-turut 5,85 dan 4,80 buku pada minggu ke 7 setelah tanam.

Hasil analisis ragam menunjukkan pengaruh yang nyata perlakuan kultivar terhadap rata-rata panjang akar krisan secara in vitro. Hasil yang diperoleh menunjukkan bahwa Kultivar Puma Putih dan Fiji Dark mempunyai perakaran yang lebih panjang yaitu 2,88 cm dan 2,56 cm dibandingkan dengan Stroika dan Fiji White yang birturut-turut memiliki panjang akar 1,81 cm dan 0,75 cm pada 7 MST.
Tabel 4 menunjukkan bahwa pemberian kolkisin tidak berpengaruh nyata terhadap panjang akar krisan pada 7 MST. Akar terpanjang terdapat pada perlakuan kolkisin 0,01% yaitu 2,60 cm yang tidak berbeda nyata dengan kontrol, kolkisin 0,025% dan 0,075%, sedangkan akar terpendek terdapat pada perlakuan kolkisin 0,1% yaitu 1,57 cm

Interaksi antara kultur krisan dan konsentrasi kolkisin memberikan pengaruh nyata terhadap jumlah daun krisan pada 7 MST (Tabel 5). Interaksi yang memberikan respon terbaik terhadap pertumbuhan jumlah daun krisan adalah kultur Puma Putih kontrol dengan rata-rata jumlah daun 14 helai per ekosplan. Perlakuan ini tidak berbeda nyata dengan kombinasi perlakuan kultur Fiji Dark kontrol, Fiji White kontrol dan Fiji White 0,075% yang memiliki jumlah daun berturut-turut 13,4, 11,8 dan 11,60 helai pada 7 MST. Jumlah daun paling sedikit terdapat pada kombinasi perlakuan kultur Puma Putih dan Stroika dengan konsentrasi kolkisin 0,1%. Pemberian kolkisin dapat menyebabkan semakin berkurangnya jumlah daun. Hasil penelitian Rahayu (1999) menunjukkan bahwa pemberian kolkisin 0,25 % pada kecambah hybrid kacang tanah (Arachis hypogaea x A. cardenansii) menyebabkan pertumbuhan tanaman terhambat, berkurangnya jumlah daun dan jumlah bunga.

Terdapat interaksi yang nyata antara kultur dan konsentrasi kolkisin yang diberikan terhadap jumlah akar pada 7 MST (Tabel 5). Interaksi yang memberikan respon terbaik terhadap jumlah akar adalah kultur Puma Putih dengan konsentrasi kolkisin 0,01% yang menghasilkan jumlah akar sebanyak 14,60 buah per ekosplan. Perlakuan ini tidak berbeda nyata dengan kultur yang sama dengan tampa pemberian kolkisin dan kultur Stroika tanpa pemberian kolkisin yang berturut-turut memiliki jumlah akar 11,40 dan 14,00 buah akar per ekosplan.

Kandungan klorofil daun dari planlet yang diberi perlakuan kolkisin umumnya relatif tinggi dibandingkan dengan planlet kontrol (Gambar 1). Pada kultur Fiji White 0,01% dan 0,1%, Puma Putih 0,01%, 0,025% dan 0,05%, Fiji Dark 0,01% dan 0,025% dan Stroika 0,05% dan 0,075% memiliki kandungan klorofil yang tinggi dibanding daun dari planlet tanpa pemberian kolkisin (kontrol). Hal ini diduga karena terjadi peningkatan sintesis klorofil pada planlet yang diberi perlakuan kolkisin. Salisbury & Ross (1995) menyatakan bahwa kloroplas muda aktif membelah sehingga terpengaruh oleh perlakuan kolkisin.

SIMPULAN DAN SARAN

Pemberian kolkisin pada kultur krisan Fiji White, Fiji Dark, Puma Putih dan Stroika dapat menimbulkan keragaman somaklonal. Pengaruh kolkisin terhadap pertumbuhan in vitro dapat menghambat pertumbuhan tunas pada awal pertumbuhan, tinggi planlet, jumlah daun, jumlah buku, tetapi tidak berpengaruh nyata terhadap jumlah tunas dan panjang akar pada 7 MST. Terdapat interaksi yang nyata antara perlakuan kultur dan konsentrasi kolkisin terhadap jumlah daun dan jumlah akar pada 7 MST.

DAFTAR PUSTAKA

