Pengukuran Suhu Permukaan Menggunakan Pancaran Spektral dari Citra Satelit: Studi Kasus di Banda Aceh

Putra Arafat Taqwallah, Ichwana Ramli, Alia Rizkia

Abstract


Abstrak. Tingginya tingkat urbanisasi menyebabkan meluasnya wilayah perkotaan dan menciptakan daerah keras yang mengakibatkan suhu tinggi di wilayah perkotaan, termasuk Banda Aceh. Permasalahan ini tentu menimbulkan ketidaknyamanan bagi masyarakat Banda Aceh. Beberapa penelitian melaporkan bahwa suhu udara yang terlalu tinggi dapat menyebabkan masalah kesehatan yang serius di masyarakat. Suhu permukaan Banda Aceh diukur menggunakan Spectral Radiance dari Satellite Imager, kemudian dibandingkan dengan data yang diukur langsung di lokasi penelitian. Hasil menunjukkan suhu udara di Banda Aceh berkisar antara 22,32°C hingga 34,86°C.  Selain itu, terjadi korelasi antara penggunaan ruang dengan tingkat suhu udara Banda Aceh berdasarkan parameter hard area dan vegetasi. Namun, hanya variabel jarak dengan badan air yang memiliki korelasi signifikan terhadap perubahan tingkat suhu.

Surface Temperature Distribution Using Spectral Radiance from Satellite Imagery: A Case Study in Banda Aceh

Abstract. The high rate of urbanization will have an effect on land change. The increasing number of buildings and lack of green open space will hinder the direction of wind speed, cause inconvenience to the public. The purpose of this study was to determine the distribution of surface temperature in the city of Banda Aceh based on the spectral emission of Landsat images from vegetation density, distance from the river, and built-up area. The air temperature data were obtained using the classification method from the digital number value of the Landsat image to the spectral radiance and then converted into air temperature. The density of the built-up area was analyzed from the Normalized Difference Vegetation Index (NDBI) and the density of the vegetation was analyzed from the Normalized Difference Vegetation Index (NDVI). The air temperature distribution map from the image is divided into 3 zones that are densely populated (built-up area), vegetation and distance to water bodies to be measured directly in the field. The air temperature from the lansat 8 images ranged from 22.32°C to 34.86°C. The zone with a distance of 3,457 km from a water body, with less vegetation density (<0) and a built-up area of 0.16-0.23 has a temperature of 31.96oC -32.45oC, while the zone with a water body distance of 1,255 km with a built-up area below zero and vegetation has a temperature of 25.82oC-27.09oC. Based on the parameters of space use (vegetation and built-up area) and the distance between the zone and the water body, it has an influence on the distribution of air temperature in the city of Banda Aceh.


Keywords


Suhu; Citra Satelit; Spectral Radiance; Temperature; Satellite Imagery

Full Text:

PDF

References


Achmad, A., Sari, L. H., & Ramli, I. (2019). A study of urban heat island of Banda Aceh City, Indonesia based on land use/cover changes and land surface temperature. Aceh International Journal of Science and Technology, 8(1), pp. 41–51.

Ahmed, S. (2017). Assessment of urban heat islands and impact of climate change on socioeconomic over Suez Governorate using remote sensing and GIS techniques. Egyptian Journal of Remote Sensing and Space Science. National Authority for Remote Sensing and Space Sciences, 21(1), pp. 15–25. doi: 10.1016/j.ejrs.2017.08.001.

Arie, F. C. (2012). Sebaran temperatur permukaan lahan dan faktor- faktor yang mempengaruhinya di kota malang. Seminar Nasional Aplikasi

Teknologi Prasarana Wilayah, 23–34. doi: 10.1016/j.pce.2018.02.009.

Arsiso, B. K. et al. (2018). Influence of urbanization-driven land use/cover change on climate: The case of Addis Ababa, Ethiopia. Physics and Chemistry of the Earth, Parts A/B/C, (February). doi: 10.1016/j.pce.2018.02.009.

Badan Perencanaan Pembangunan Daerah Kota Banda Aceh. (2016).Statistik Banda Aceh 2016.pp. 16–18.

Dwivedi, A. & Mohan, B. (2018). Impact of green roof on micro climate to reduce Urban Heat Island. Remote Sensing Applications: Society and Environment. Elsevier B.V. doi: 10.1016/j.rsase.2018.01.003.

Gu, Y., & Li, D. (2017). A modeling study of the sensitivity of urban heat islands to precipitation at climate scales. Urban Climate, 0–1. https://doi.org/10.1016/j.uclim.2017.12.001.

Hari, D., & Rizki, B. (2016). Spatio temporal analysis trend of land use and land cover change against temperature based on remote sensing data in Malang City. Procedia - Social and Behavioral Sciences, 227, 232–238. https://doi.org/10.1016/j.sbspro.2016.06.066.

Jhonnerie, R. et al. (2015). Random forest classification for mangrove land cover mapping using Landsat 5 TM and ALOS PALSAR imageries. Procedia Environmental Sciences. Elsevier B.V., 24, pp. 215–221. doi: 10.1016/j.proenv.2015.03.028.

Kikon, N. et al. (2016). Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal satellite data. Sustainable Cities and Society. Elsevier B.V., 22, pp. 19–28. doi: 10.1016/j.scs.2016.01.005.

Lazarova,V. L., & Kusaka, H. (2018). Title: Study on the Urban Heat Island in Sofia City: Numerical Simulations with Potential Natural Vegetation and Present Land Use Data. Sustainable Cities and Society. Elsevier B.V.,17. doi: 10.1016/j.scs.2018.03.012.

Liang, Huang, W., Jones, J., Wang, P., Hang, Q.J. (2018). A zonal model for assessing street canyon air temperature of high-density cities. Building and Environment, 132, pp. 160–169. https://doi.org/10.1016/j.buildenv.2018.01.035.

Nakata-Osaki, C. M., Souza, L. C. L. & Rodrigues, D. S. (2018). THIS – Tool for Heat Island Simulation: A GIS extension model to calculate urban heat island intensity based on urban geometry. Computers, Environment and Urban Systems. Elsevier, 67, pp. 157–168. doi: 10.1016/j.compenvurbsys.2017.09.007.

Pal, S. & Ziaul, S. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science. National Authority for Remote Sensing and Space Sciences, 20(1), pp. 125–145. doi: 10.1016/j.ejrs.2016.11.003.

Rosso, F,G, Castaldo, I., Piselli, V. L., Pisello, C., Salata, A. L., Ferrero, F., Cotana, M., Franco de Lieto Vollaro, A. (2018). On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons. Renewable Energy, 118, 825–839. https://doi.org/10.1016/j.renene.2017.11.074.

Taleghani, M. (2018). Outdoor thermal comfort by different heat mitigation strategies- A review. Renewable and Sustainable Energy Reviews, 81, 2011–2018. https://doi.org/10.1016/j.rser.2017.06.010.

Tong.,Wong, S., Jusuf, N. H., Tan, S. K., Wong, C. L., Ignatius, H.F., & Tan, M. E. (2018) Study on correlation between air temperature and urban morphology parameters in built environment in northern China. Building and Environment. Elsevier, 127, pp. 239–249. doi: 10.1016/j.buildenv.2017.11.013.

Wang, Y., Berardi, U., & Akbari, H. (2016). Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy and Buildings, 114, 2–19. https://doi.org/10.1016/j.enbuild.2015.06.046

Zhou., Zhuang, Y., Yang, Z., Yu, F., Xie, Y. X. (2017). Urban morphology on heat island and building energy consumption. Procedia Engineering, 205, pp. 2401–2406. doi: 10.1016/j.proeng.2017.09.862.




DOI: https://doi.org/10.17969/rtp.v14i2.22028

Refbacks

  • There are currently no refbacks.



Creative Commons LicenseISSN: 2085-2614E-ISSN: 2528-2652
Copyright© 2009-2021 | ISSN: 2085-2614 | EISSN: 2528-2654
Rona Teknik Pertanian is licensed under a Creative Commons Attribution 4.0 International License.

 

Published by: 
Program Studi Teknik PertanianFakultas Pertanian, Universitas Syiah Kuala 
associated with Indonesia Society of Agricultural Engineering (ISAE) Aceh.
Jl. Tgk. Hasan Krueng Kalee No. 3, Kopelma Darussalam,
Banda Aceh, 23111, Indonesia.
Email: jronatp@unsyiah.ac.id


Online Submissions & Guidelines Editorial Policies | Contact Statistics Indexing | Citations