Electroanalytical Performance of Graphene Paste Electrode Modified Al(III)-TiO2 Nanocomposites in Fipronil Solution

Muhammad Nurdin, Zul Arham, Sri Rahayu, La Ode Agus Salim, Maulidiyah Maulidiyah


The new composite material Al(III)-TiO2 has been synthesized and applied as a modifier of graphene paste electrode for the determination of fipronil pesticide by cyclic voltammetry. The methods were to synthesis of Aluminum-Titanium dioxide (AT), preparation of graphene paste electrode with mass varied Al(III)-TiO2 (GAT) (0.05 g, 0.1 g, 0.2 g), and fipronil electroanalytic respons. Addition of Al(III)-TiO2 to the graphene paste electrode shows redox properties which are well characterized by a fast electron transfer process. Based on the results of measurements in a solution containing fipronil, it is known that fipronil is oxidized at a potential value of 0.26 V. Furthermore, the fipronil oxidation process on the GAT surface is influenced by diffusion control, this is powered by R2 value 0.91 when plotted between peak oxidation currents (Ip­a) vs. root scan rate. Other results show that measurement linearity is in the range 0.01 to 0.09 µg/L with a limit of detection (LOD) value of 0.0164 μg/L. Moreover, GAT shows good stability in the determination of fipronil with% RSD equal to 5%.


Al(III); TiO2; cyclic voltammetry; fipronil pesticide; graphene paste electrode

Full Text:



Alizadeh, T. (2009) High Selective Parathion Voltammetric Sensor Development by Using an Acrylic Based Molecularly Imprinted Polymer‐Carbon Paste Electrode, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 21, 1490–1498.

Desireé, M., Navas, J., Sánchez-Coronilla, A., Alcántara, R., Fernández-Lorenzo, C., Martín-Calleja, J. (2015) Highly Al-doped TiO2 nanoparticles produced by Ball Mill Method: structural and electronic characterization, Materials Research Bulletin, 70, 704–711.

Đurović, A., Stojanović, Z., Kravić, S., Grahovac, N., Bursić, V., Vuković, G. and Suturović, Z. (2016) Development and validation of chronopotentiometric method for imidacloprid determination in pesticide formulations and river water samples, International journal of analytical chemistry.

Ensafi, A.A., Heydari-Bafrooei, E., Rezaei, B. (2013) Simultaneous detection of hydroxylamine and phenol using p-aminophenol-modified carbon nanotube paste electrode, Chinese Journal of Catalysis, 34, 1768–1775.

Gan, J., Bondarenko, S., Oki, L., Haver, D., Li, J.X. (2012) Occurrence of fipronil and its biologically active derivatives in urban residential runoff, Environmental science & technology, 46, 1489–1495.

Gunasekara, A.S., Truong, T., Goh, K.S., Spurlock, F., Tjeerdema, R.S. (2007) Environmental fate and toxicology of fipronil, Journal of Pesticide Science, 706180001.

Guo, Q., Zhao, S., Zhang, J., Qi, K., Du, Z., Shao, B. (2018) Determination of fipronil and its metabolites in chicken egg, muscle and cake by a modified QuEChERS method coupled with LC-MS/MS, Food Additives & Contaminants: Part A, 35, 1543–1552.

Janegitz, B.C., Medeiros, R.A., Rocha-Filho, R.C., Fatibello-Filho, O. (2012) Direct electrochemistry of tyrosinase and biosensing for phenol based on gold nanoparticles electrodeposited on a boron-doped diamond electrode, Diamond and related materials, 25, 128–133.

Jimenez, J.J., Bernal, J.L., del Nozal, M.J., Martín, M.T., Mayo, R. (2008) Sample preparation methods to analyze fipronil in honey by gas chromatography with electron-capture and mass spectrometric detection, Journal of Chromatography A, 1187, 40–45.

Kim, Y.A., Yoon, Y.S., Jeon, S.J., Cole, E., Lee, J., Kho, Y., Cho, Y.H. (2019) Distribution of fipronil in humans, and adverse health outcomes of in utero fipronil sulfone exposure in newborns, International journal of hygiene and environmental health, 222, 524–532.

Ly, N.H., Nguyen, T.H., Nghi, N.Đ., Kim, Y.-H., Joo, S.-W. (2019) Surface-Enhanced Raman Scattering Detection of Fipronil Pesticide Adsorbed on Silver Nanoparticles, Sensors, 19, 1355.

Maulidiyah, M., Azis, T., Lindayani, L., Wibowo, D., Salim, L.O.A., Aladin, A., Nurdin, M. (2019) Sol-gel TiO2/Carbon Paste Electrode Nanocomposites for Electrochemical-assisted Sensing of Fipronil Pesticide, Journal of Electrochemical Science and Technology, 10, 394–401.

Montes, R.H.O., Dornellas, R.M., Silva, L.A.J., Squissato, A.L., Richter, E.M., Munoz, R.A.A. (2016) Amperometric determination of the insecticide fipronil using batch injection analysis: comparison between unmodified and carbon-nanotube-modified electrodes, Journal of Solid State Electrochemistry, 20, 2453–2459.

Munir, A., Bozal-Palabiyik, B., Khan, A., Shah, A. Uslu, B. (2019) A novel electrochemical method for the detection of oxymetazoline drug based on MWCNTs and TiO2 nanoparticles, Journal of Electroanalytical Chemistry, 844, 58–65.

Murtada, K., Jodeh, S., Zougagh, M., Ríos, Á. (2018) Development of an Aluminium Doped TiO2 Nanoparticles‐modified Screen Printed Carbon Electrode for Electrochemical Sensing of Vanillin in Food Samples, Electroanalysis, 30, 969–974.

Nurdin, M., Maulidiyah, M., Muzakkar, M.Z., Umar, A.A. (2019a) High performance cypermethrin pesticide detection using anatase TiO2-carbon paste nanocomposites electrode, Microchemical Journal, 145, 756–761.

Nurdin, M., Prabowo, O.A., Arham, Z., Wibowo, D., Maulidiyah, M., Saad, S.K.M., Umar, A.A. (2019b) Highly sensitive fipronil pesticide detection on ilmenite (FeO.TiO2)-carbon paste composite electrode, Surfaces and Interfaces, 16, 108–113.

Nurdin, M., Agusu, L., Putra, A.A.M., Maulidiyah, M., Arham, Z., Wibowo, D., Muzakkar, M.Z., Umar, A.A., 2019c. Synthesis and electrochemical performance of graphene-TiO2-carbon paste nanocomposites electrode in phenol detection, Journal of Physics and Chemistry of Solids, 131, 104–110.

Okumura, F., Amaral, R.B., Orestes, E., Silva, A.B.F., Mazo, L.H. (2016) Electrochemical and quantum chemical investigations of the insecticide fipronil, Journal of the Brazilian Chemical Society, 27, 925–932.

Pesavento, M., D’Agostino, G., Biesuz, R., Alberti, G. (2009) Molecularly imprinted polymer‐based sensors for Amperometric determination of nonelectroactive substances, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 21, 604–611.

Prasad, K., Prathish, K.P., Gladis, J.M., Naidu, G.R.K., Rao, T.P. (2007) Molecularly imprinted polymer (biomimetic) based potentiometric sensor for atrazine, Sensors and Actuators B: Chemical, 123, 65–70.

Stafford, E.G., Tell, L.A., Lin, Z., Davis, J.L., Vickroy, T.W., Riviere, J.E.,Baynes, R.E. (2018) Consequences of fipronil exposure in egg-laying hens, Journal of the American Veterinary Medical Association, 253, 57–60.

Standard, T.A. (2008) Pesticide Residues : National Bureau of Agricultural Commodity and Food Standards, Gazette.

Tu, Q., Hickey, M.E., Yang, T., Gao, S., Zhang, Q., Qu, Y., Du, X., Wang, J., He, L. (2019) A simple and rapid method for detecting the pesticide fipronil on egg shells and in liquid eggs by Raman microscopy, Food Control, 96, 16–21.

Vasylieva, N., Ahn, K.C., Barnych, B., Gee, S.J., Hammock, B.D. (2015) Development of an immunoassay for the detection of the phenylpyrazole insecticide fipronil, Environmental science & technology, 49, 10038–10047.

Vı́lchez, J.L., Prieto, A., Araujo, L., Navalón, A. (2001) Determination of fipronil by solid-phase microextraction and gas chromatography–mass spectrometry, Journal of chromatography A, 919, 215–221.

Wang, T., Hu, J., Liu, C. (2014) Simultaneous determination of insecticide fipronil and its metabolites in maize and soil by gas chromatography with electron capture detection, Environmental monitoring and assessment, 186, 2767–2774.

Xu, W., Qi, M., Li, X., Liu, X., Wang, L., Yu, W., Liu, M., Lan, A., Zhou, Y., Song, Y. (2019) TiO2 nanotubes modified with Au nanoparticles for visible-light enhanced antibacterial and anti-inflammatory capabilities, Journal of Electroanalytical Chemistry, 842, 66–73.

Yang, H.-H., Chiu, M.-H., Chang, K.-M., Shih, Y. (2012) Substituent effects on the electrocatalytic oxidation of phenols at preanodized screen-printed carbon electrodes, Journal of Electroanalytical Chemistry, 682, 172–174.

Yin, J., Chen, X., Chen, Z. (2019) Quenched electrochemiluminescence sensor of ZnO@ g-C3N4 modified glassy carbon electrode for fipronil determination, Microchemical Journal, 145, 295–300.

Yuan-Yuan, L.U., Meng-Ni, C., Yi-Li, G.A.O., Jian-Mao, Y., Xiao-Yu, M.A., Jian-Yun, L.I.U. (2015) Preparation of zinc oxide-graphene composite modified electrodes for detection of trace Pb (II), Chinese Journal of Analytical Chemistry, 43, 1395–1401.

Zhang, T., Lang, Q., Zeng, L., Li, T., Wei, M., Liu, A. (2014) Substituent effect on the oxidation peak potentials of phenol derivatives at ordered mesoporous carbons modified electrode and its application in determination of acidity coefficients (pKa), Electrochimica Acta, 115, 283–289.

DOI: https://doi.org/10.23955/rkl.v15i2.16947


  • There are currently no refbacks.

Copyright (c) 2020 Muhammad Nurdin, Zul Arham, Sri Rahayu, La Ode Agus Salim, Maulidiyah Maulidiyah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Jurusan Teknik Kimia Universitas Syiah Kuala, Jl. Tgk. Syech Abdur Rauf No.7, Kopelma Darussalam, Banda Aceh, INDONESIA



Nasrul Arahman, Prof. Dr. S.T., M.T.
Phone: +62813-6092-7917
E-mail: rkl@che.unsyiah.ac.id, nasrular@unsyiah.ac.id



Mirna Rahmah Lubis
E-mail: mirna@che.unsyiah.ac.id
Wahyu Rinaldi, ST, M.Sc.
E-mail: wahyu.rinaldi@che.unsyiah.ac.id