Effect of Activator Type on Activated Carbon Characters from Teak Wood and The Bleaching Test for Waste Cooking Oil

Sriatun Sriatun, Shabrina Herawati, Icha Aisyah

Abstract


The starting material for activated carbon was biomass from teak woodcutting, which consists of 47.5% cellulose, 14.4% hemicellulose, and 29.9% lignin. The surface area and iodine number of activated carbons are the factors determining the adsorption ability. This study aims to determine the effect of the activator type on activated carbon characters and test the absorption ability for waste cooking oil. The synthesis stages include carbonization, chemical activation, and then physics activation. The activation process consists of two steps. Firstly, the chemical activation via adding H2SO4, and H3PO4 at room temperature for 24 hours, the second, physical activation by heating at various temperatures of 300, 400, and 500 °C for two hours. The characterizations of activated carbon include water content, ash content, iodine number, functional groups, and surface area. Furthermore, the activated carbon was used as an adsorbent for waste cooking oil for 60 minutes at 100 °C with a stirring of 500 rpm. The results were analyzed using UV-Vis spectrophotometry at a maximum wavelength of 403 nm. The iodine numbers of activated carbon ranged 481.1-1211.4 mg/g and 494.8-1204 mg/g for H3PO4 and H2SO4, respectively.Activated carbon with H3PO4 of 15% and an activation temperature of 400 °C has the highest surface area of 445.30 m2/g.  The H2SO4 dan H3PO4 activators can be used to improve the quality of activated carbon in absorbing dyes in waste cooking oil, where the optimum concentration is 10-15% (v/v). The H3PO4 activator tends to produce a higher bleaching percentage than H2SO4.

 


Keywords


activator type; activated carbon; waste cooking oil; bleaching; teak wood

Full Text:

PDF

References


Alamsyah, M., Kalla, R., La Ifa. (2017) Pemurnian Minyak jelantah dengan proses adsorbs, Journal of Chemical Process Engineering, 02(02), 22-26.

Al-Qadah, Z., Shawabkah, R. (2009) Production and Characterization of Granular Activated Carbon from Activated Sludge, Brazilian Journal of Chemical Engineering, 26(1), 127-136.

Arami-Niya, A., Daud, W.M.A.W., Mjalli, F.S. (2010) Using Granular Activated Carbon Prepared from Oil Palm Shell by ZnCl2 and Physical for Methane Adsorption, J. Anal. Applied Pyrol., 89, 197-203.

Bhatnagar, A., Hogland, W., Marques, M., Sillanpää, M. (2013) An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219, 499-511.

Danish, M., Ahmad, T. (2018) A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application, Renewable and Sustainable Energy Reviews, 87, 1-21.

Gercel, O., Ozcan, A., Ozcan, A.S., Gercel, H.F. (2007) Preparation of Activated Carbon from A Renewable Bio-plant of Euphorbia rigida by H2SO4 Activation and Its Adsorption Behavior in Aqueous Solutions, J. Applied Surface Science. 253, 4819-5184.

Guo, Y., Tan, C., Sun, J., Li, W., Zhang, J., Zhao, C. (2020) Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption, Chemical Engineering Journal, 381, 122736.

Hasanzadeh, V., Rahmanian, O., Heidari, M. (2019) Cefixime adsorption onto activated carbon prepared by dry thermochemical activation of date fruit residues, Microchemical Journal, 104261.

Hussein, F. H., Halbus, A.F., Lafta, A.J., Athab, Z.H. (2015) Preparation and Characterization of Activated Carbon from Iraqi Khestawy Date Palm, Journal of Chemistry, Article ID 295748, 8 pages.

Ketaren (1986) Pengantar Teknologi Minyak dan Lemak Pangan, Cetakan Pertama, 1986, UI-Press, Jakarta.

Lin, H., Liu, Y., Chang, Z., Yan, S., Liu, S., Han, S. (2020) A new method of synthesizing hemicellulose-derived porous activated carbon for high-performance supercapacitors, Microporous and Mesoporous Materials, 292, 109707.

Liu, Z., Huang, Y., Zhao, G. (2016) Preparation and Characterization of Activated Carbon Fibers from Liquefied Wood by ZnCl2 Activation, Bioresources, 11(2), 3178-3190.

Miao, Q., Tang, Y., Xu, J., Liu, X., Xiao, L., Chen, Q. (2013) Activated carbon prepared from soybean straw for phenol adsorption, Journal of the Taiwan Institute of Chemical Engineers, 44(3), 458-465.

Oginni, O., Singh, K., Oporto, G., Dawson-Andoh, B., McDonald, L., Sabolsky, E. (2019) Effect of one-step and two-step H3PO4 activation on activated carbon characteristics, Bioresource Technology Reports, 8, 100307.

Ozdemir, I., Şahin, M., Orhan, R., and Erdem, M. (2014) Preparation and characterization of activated carbon from grape stalk by zinc chloride activation, Fuel Processing Technology, 125, 200-206.

Peng, Z., Guo, Z., Chu, W., Wei, M. (2016) Facile synthesis of high surface area activated carbon from coal for supercapacitors and high CO2 sorption, RSC Advances, 48(6), 42019-42028.

Polii, F.F. (2017) Pengaruh Suhu dan Lama Aktivasi Terhadap mutu Arang Aktif dari Kayu Kelapa, Jurnal Industri Hasil Perkebunan, 12(2), 21-28.

Puziy, A. M., Poddubnaya, Martinez–Alonso, O. I., Suarez–Garcia, A., F.,DAN Tascon, J. M. D. (2003) Synthetic Carbons Activated with Phosphoric acid III, Carbon, 41, 1181-1191.

Rawal, S., Joshi, B., Kumar, Y. (2018) Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochemical supercapacitors, Journal of Energy Storage, 20, 418-426.

Riyanta, A. B., Nurniswati, N. (2016) Adsorpsi minyak jelantah menggunakan karbon aktif dan serbuk kopi pada pembuatan sabun padat ramah lingkungan, SENIT, ISBN: 978-602-74355-0-6.

Sesuk, T., Tammawat, P., Jivaganont, P., Somton, K., Limthongkul, P., Kobsiripha, W. (2019) Activated carbon derived from coconut coir pith as high performance of supercapacitor electrode material, Journal of Energy Storage, 25, 100910.

Sobrinho, R. A. S., Andrade, G.R.S., Costa, L. P., de Souza, M. J.B., de Souza, A.M.G.P., Gimenez, I.F. (2019) Ordered micro-mesoporous carbon from palm oil cooking waste via nanocasting in HZSM-5/SBA-15 composite: Preparation and adsorption studies, Journal of Hazardous Materials, 362, 53-61.

Sriatun, Taslimah, Suyati, L. (2015) Pemanfaatan Katalis Silika Alumina dari Bagasse pada Pembuatan Biodiesel dari Minyak Goreng Sisa Pakai, Jurnal Teknologi Industri Pertanian, 25(1), 35-42.

Sriatun, Darmawan, A., Sriyanti, Cahyani, W., Widyandari, H. (2018) Zeolite/magnetite composites as catalysts on the Synthesis of Methyl Esters (MES) from cooking oil, Journal of Physics: Conf. Series, 1025, 012135.

Suhartana (2006) Pemanfaatan Tempurung Kelapa sebagai Bahan Baku Arang Aktif dan Aplikasinya untuk Penjernihan Air Sumur di Desa Belor Kecamatan Ngaringan Kabupaten Grobogan, Berkala Fisika, 9(3), 151-156.

Sumarna, Y. (2004) Budidaya Jati, Penerbit Swadaya, Bogor.

Tranh, H. N., Chao, H. P., Lee, C. K. (2017) Activated carbon derived from spherical hydrochar functionalized with triethylenetetramine: Synthesis, characterizations, and adsorption application, Green Processing and Synthesis, 6(6), 565-576.




DOI: https://doi.org/10.23955/rkl.v15i2.14788

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Sriatun Sriatun

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JURNAL REKAYASA KIMIA & LINGKUNGAN

Jurusan Teknik Kimia Universitas Syiah Kuala, Jl. Tgk. Syech Abdur Rauf No.7, Kopelma Darussalam, Banda Aceh, INDONESIA

 

PRINCIPAL CONTACT

Nasrul Arahman, Prof. Dr. S.T., M.T.
Phone: +62813-6092-7917
E-mail: rkl@che.unsyiah.ac.id, nasrular@unsyiah.ac.id

 

SUPPORT CONTACT

Mirna Rahmah Lubis
E-mail: mirna@che.unsyiah.ac.id
Wahyu Rinaldi, ST, M.Sc.
E-mail: wahyu.rinaldi@che.unsyiah.ac.id

 

VISITORS