Modeling and Simulation on NO\textsubscript{x} and N\textsubscript{2}O Formation in Co-combustion of Low-rank Coal and Palm Kernel Shell

Mahidin1, Asri Gani1 and Khairil2

1Department of Chemical Engineering, Syiah Kuala University
2Department of Mechanical Engineering, Syiah Kuala University
Jl. Tgk. Syech Abdurrauf No. 7 Darussalam - Banda Aceh, 2311
E-mail: mahidin@unsyiah.ac.id or mahidin_thalib@yahoo.com

Abstract

NO\textsubscript{x} and N\textsubscript{2}O emissions from coal combustion are claimed as the major contributors for the acid rain, photochemical smog, greenhouse and ozone depletion problems. Based on the facts, study on those emissions formation is interest topic in the combustion area. In this paper, theoretical study by modeling and simulation on NO\textsubscript{x} and N\textsubscript{2}O formation in co-combustion of low-rank coal and palm kernel shell has been done. Combustion model was developed by using the principle of chemical-reaction equilibrium. Simulation on the model in order to evaluate the composition of the flue gas was performed by minimization the Gibbs free energy. The results showed that by introduced of biomass in coal combustion can reduce the NO\textsubscript{x} concentration in considerably level. Maximum NO level in co-combustion of low-rank coal and palm kernel shell with fuel composition 1:1 is 2,350 ppm, low enough compared to single low-rank coal combustion up to 3,150 ppm. Moreover, N\textsubscript{2}O is less than 0.25 ppm in all cases.

Keywords: low-rank coal, N\textsubscript{2}O emission, NO\textsubscript{x} emission, palm kernel shell

1. Introduction

N\textsubscript{2}O is a sharp greenhouse gas. It is responsible for the destruction of ozone in the atmosphere. The concentration of N\textsubscript{2}O in atmosphere increases at the rate of 0.2-0.4% per year. On the other hand, NO\textsubscript{x} emissions are also a major environmental problem because they have been shown to contribute to the formation of acid rain and photochemical smog (Förtsch, 1998). In recent years, intensive researches that worked on the mechanism of formation and decomposition of N\textsubscript{2}O and NO\textsubscript{x} have been carried out in over the world. Moritomi \textit{et al}. (1991) and Amand and Andersson (1989) correlated the N\textsubscript{2}O emission to the fuel ratio of various fuels. Boemer \textit{et al}. (1993) have considered such factors as coal rank, excess air ratio and temperature as the most important parameters influencing N\textsubscript{2}O and NO\textsubscript{x} emissions in coal combustion (Shen \textit{et al}., 2003).

Moreover, the effects of co-combustion of coal and biomass on the emissions formation have also been studied by Shen \textit{et al}. (2003) and Ross \textit{et al}. (2002). Several mechanism and kinetics of N\textsubscript{2}O and NO\textsubscript{x} formation and reduction have been proposed (Shen \textit{et al}., 2003; Förtsch, 1998; Li \textit{et al}., 1998). Advanced kinetic reaction models have been developed that describe the process of devolatilisation, volatiles conversion and char burnout.

This paper deals with the theoretical study on NO\textsubscript{x} and N\textsubscript{2}O formation in co-combustion of low-rank coal and palm kernel shell (PKS) as function of air/fuel ratio, inlet air temperature and reactor pressure.

2. Kinetic Model of Combustion

Modeling of coal and biomass combustion is usually based on the assumption that the conversion of coal/biomass can be divided into three steps: pyrolysis, combustion of volatiles and char burn-out. Pyrolysis can be regarded as a two-stage process: primary pyrolysis and secondary pyrolysis. During primary pyrolysis, coal/biomass decomposes releasing volatile matter that, afterward, undergoes secondary pyrolysis.

The primary pyrolysis process is approximated by the single reaction (Förtsch \textit{et al}., 1998):

\[RF \rightarrow C + T + G \]

\(RF \) denotes raw fuel (coal/biomass, daf): \(C \), \(T \) and \(G \) represent the main products of pyrolysis: char, tar and gas. Char is assumed to be pure carbon; gas is a mixture of CO, CO\textsubscript{2}, H\textsubscript{2}, H\textsubscript{2}O and a light hydrocarbon: C\textsubscript{m}H\textsubscript{n}, represented by C\textsubscript{2}H\textsubscript{4}. Tar fraction is assumed as C\textsubscript{m}H\textsubscript{n}O\textsubscript{r} with an H/C molar ratio of 1.1 and an O/C molar ratio equal to the parent coal/biomass.
After being released, the volatile matter undergoes secondary reactions, especially tars. The secondary reactions of tar are modeled by considering three competing reactions producing soot, hydrogen, light hydrocarbons and carbon monoxide (Förtsch et al., 1998):

\[C_{x}H_{y}O_{z} \rightarrow C + H + CO \]
\[C_{x}H_{y}O_{z} \rightarrow C + C_{a}H_{b} + CO \]
\[C_{x}H_{y}O_{z} + O_{2} \rightarrow CO + H_{2} \]

Since there exists no boundary layer on the soot particle surface, soot is treated as a gaseous in combustion. Therefore, the burnout of soot and char particles is (Förtsch et al., 1998):

\[C + \frac{1}{2}O_{2} \rightarrow CO \]

3. Fuel-Nitrogen Evolution, NO\textsubscript{x} Formation and Reduction

In coal/biomass combustion, the major part of NO\textsubscript{x} emissions arise from fuel-bound nitrogen released during different stages of combustion:

a. primary pyrolysis; reaction (1),

b. secondary pyrolysis of tar; reactions (2)-(4),

c. soot and char burnout; reaction (5).

Each of the pyrolysis products contains nitrogen, the distribution of which depends on the nitrogen functional groups in the particular fuel, on fuel properties and pyrolysis conditions. Tar nitrogen is released as HCN during secondary reactions of tar with a certain amount of nitrogen remaining in the soot. The rate of volatile nitrogen release is assumed to follow the rate of primary pyrolysis; the rates secondary reactions of tars; and the rate of soot combustion. The release of char nitrogen during char combustion is enhanced in the first stages of char combustion.

Reactions of the nitrogen-containing species taking place in the gas phase are very complex. The NO\textsubscript{x} reaction scheme is shown in Fig. 1. By taking in considerations the CN subsystem, represented by HCN, and the NH\textsubscript{3} subsystem, comprising all highly reactive nitrogen-containing intermediate species (Förtsch et al., 1998).

Decay of the CN subsystem is initiated by the attack of oxygen-containing species (Förtsch et al., 1998):

\[HCN + O_{x} \rightarrow NH_{i} + \ldots \]

For the subsequent conversion of NH\textsubscript{i} species, oxidation of this species to form NO and reduction of NO are considered (Förtsch et al., 1998):

\[NH_{i} + O_{x} \rightarrow NO + \ldots \]
\[NH_{i} + NO \rightarrow N_{2} + \ldots \]

4. Modeling and Simulation Procedure

Modeling and simulation were performed by using Aspen Plus, a commercial process simulator. In this simulator, decomposition and combustion processes took place in the Yields and Gibbs Reactors, respectively. Decompo-sition is addressed to decompose
the fuel into its elements because the Gibbs Reactor can not detect the conventional species such as coal or PKS. Energy for decomposition is supplied automatically from combustion by connecting the Yields and Gibbs Reactors using an energy line as shown by dashed line in Fig. 2.

The compositions of the flue gas in combustion process were evaluated by minimization of the Gibbs free energy using the following equations:

\[
\frac{\Delta G}{RT} = \frac{\Delta G^0 - \Delta H^b}{RT} + \int \frac{\Delta C_i}{R} \frac{dT}{T} - \int \frac{\Delta C_i}{R} \frac{dT}{T}
\]

\[
(17)
\]

\[
\frac{\Delta G}{RT} = -\ln K
\]

\[
(18)
\]

\[
\prod_i (y_i \phi_i)^v = \left(\frac{P}{P_0} \right)^v K
\]

\[
(19)
\]

Fugacity coefficient in the model was estimated using Peng-Robinson equation of state:

\[
\ln \phi_i = \frac{B_i}{B} (Z - 1) - \ln (Z - B) + \frac{A}{2.4828B} + \left(\frac{B_i}{B} \right) \frac{2}{a \alpha} \sum_j y_j (a \alpha)_j \ln \left(\frac{Z + 2.414B}{Z - 0.41B} \right)
\]

\[
(20)
\]

where \(\Delta G \) = Gibbs free energy (J/mol), \(\Delta H \) = enthalpy (J/mol), \(T \) = temperature (K), \(R \) = gas constant (J/mol K), \(C_p \) = heat capacity (J/mol K), \(K \) = equilibrium constant, \(y_i \) = equilibrium composition of species \(i \), \(\phi \) = fugacity coefficient of species \(i \), \(v \) = coefficient of stoichiometry, \(P \) = pressure (atm), \(a, A, B, \alpha \) = constants of Peng Robinson equation of state.

Table 1 shows the data of proximate and ultimate analysis for coal and PKS used in this study.

5. Results and Discussion

5.1. Coal combustion

Profiles of \(N_2O \) and \(NO_x \) in coal combustion is shown in Fig. 3, it indicates that the maximum NO emission in single coal combustion appears at air to fuel ration about 9.18 kg/kg. At this point, NO emission reaches level of 3,150 ppm. Meanwhile, the maximum \(NO_2 \) is about 4.75 ppm at air to fuel ratio 12.75-13.65 kg/kg. The lowest level of emission is presented by \(N_2O \) which shows a value less than 0.25 ppm over the observation range. Decrease in NO by increase of oxygen after reached the maximum level is predicted by NO reduction phenomenon (Liu et al., 1999):

\[
NO + O_2 \rightarrow NO_2 + O
\]

(21)

The above phenomenon is also supported by increase in \(NO_2 \) concentration during the combustion. Another possibility for reduction of NO is initiated by soot as was explained in reaction (9). Adiabatic combustion temperature range in this case is 1,477-2,188 K. those All simulation data were achieved at the equilibrium conversion and the minimum total Gibbs energy.

5.2. PKS combustion

Combustion of single palm shell exhibits the same pattern of emissions with single coal combustion, however the emission level is significantly low especially for NO emission as shown in Fig. 4. For this case, adiabatic combustion temperature range is 1,390-1,867 K. Based on the facts that the nitrogen content in coal (0.48%) and PKS (0.30%) as listed in Table 1, and combustion temperature is different, therefore it can be proposed that the \(NO_x \) emissions are come from fuel and thermal \(NO_x \)s. The same behavior is also proposed for the \(N_2O \) emission. In other word, both fuel and thermal \(NO_x \)s give a contribution for emissions.

5.3. Co-combustion of coal and PKS

As expected, introduce of biomass in co-combustion can significantly reduce the NO emission and slightly reduce the \(NO_2 \) and \(N_2O \) emissions (by compared the data in Fig. 5 with the data in Fig. 3). The effect of biomass on reduction of \(NO_x \) and \(N_2O \) has been described in reactions (13-16). Since the reductions of \(NO_x \) and \(N_2O \) are caused by reductive radical reactions, then the patterns for NO and \(NO_2 \) are depart from single coal or single PKS combustion. All the emission levels and temperatures in co-combustion lie between single coal and single palm shell combustions. Fig. 5 reflects the effectiveness of biomass in reduction of emissions in co-combustion. Weight ratio of coal to palm shell in this study is 1:1. Range of adiabatic combustion temperature for co-combustion is 1,132-2,094 K.
Table 1. Proximate and ultimate analysis data for low-rank coal and PKS

<table>
<thead>
<tr>
<th>Unit (adb)</th>
<th>Low-rank coal</th>
<th>PKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture</td>
<td>%</td>
<td>5.83</td>
</tr>
<tr>
<td>Ash</td>
<td>%</td>
<td>5.40</td>
</tr>
<tr>
<td>Volatile Matter</td>
<td>%</td>
<td>46.00</td>
</tr>
<tr>
<td>Fixed Carbon</td>
<td>%</td>
<td>42.77</td>
</tr>
<tr>
<td>Ultimate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td>%</td>
<td>60.65</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>%</td>
<td>5.75</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>%</td>
<td>0.48</td>
</tr>
<tr>
<td>Total Sulphur</td>
<td>%</td>
<td>0.38</td>
</tr>
<tr>
<td>Oxygen</td>
<td>%</td>
<td>27.34</td>
</tr>
<tr>
<td>Calorific Value</td>
<td>kcal/kg</td>
<td>5,904</td>
</tr>
</tbody>
</table>

adb = air dried base

Figure 2. Flow diagram of combustion process in ASPEN PLUS Simulator

Figure 3. NOx and N2O emissions as function of air to fuel ratio in single coal combustion

Figure 4. NOx and N2O emissions as function of air to fuel ratio in single palm shell combustion
It should be noted that all the above simulations are performed at pressure of 1 atm and inlet air temperature of 298 K.

Moreover, in order to observe the influence of the reactor pressure on emissions in co-combustion, simulation was conducted at several pressure levels as presented by Fig. 6.

It is clearly shown that NO tends to slow down by increase of pressure, while NO₂ and N₂O provide the opposite behavior. This fact describe that pressurised combustor is more effective in reduce of NO, the major part of emissions. In this part, simulation was carried out at air to fuel ratio 5.21 kg/kg, air inlet temperature 298 K and similar fuel composition.

Finally, increase of air inlet temperature causes the sharp increase of NO and slight increase of NO₂ and N₂O. Higher of air inlet temperature may contribute higher temperature in combustor since the combustion conducted adiabatically. This higher temperature is possible to initiate the thermal NOₓ reactions.

6. Conclusions

NOₓ reduction reaction at higher temperature in single coal combustion can be initiated by oxygen and soot. In co-combustion, NOₓ reduction may also be supported by biomass reductive radicals’ reactions, in addition to oxygen and soot reactions.

Acknowledgements

This research is funded by Ministry of Research and Technology, Republic of Indonesia through RUT XII Program (2005-2006).

References

