Klasifikasi Bit-Plane Noise untuk Penyisipan Pesan pada Teknik Steganography BPCS Menggunakan Fuzzy Inference Sistem Mamdani

Rahmad Hidayat

Abstract


Bit-Plane Complexity Segmentation (BPCS) is a fairly new steganography technique. The most important process in BPCS is the calculation of complexity value of a bit-plane. The bit-plane complexity is calculated by looking at the amount of bit changes contained in a bit-plane. If a bit-plane has a high complexity, the bi-plane is categorized as a noise bit-plane that does not contain valuable information on the image. Classification of the bit-plane using the set cripst set (noise/not) is not fair, where a little difference of the value will significantly change the status of the bit-plane. The purpose of this study is to apply the principles of fuzzy sets to classify the bit-plane into three sets that are informative, partly informative, and the noise region. Classification of the bit-plane into a fuzzy set is expected to classify the bit-plane in a more objective approach and ultimately message capacity of the images can be improved by using the Mamdani fuzzy inference to take decisions which bit-plane will be replaced with a message based on the classification of bit-plane and the size of the message that will be inserted. This research is able to increase the capability of BPCS steganography techniques to insert a message in bit-pane with more precise so that the container image quality would be better. It can be seen that the PSNR value of original image and stego-image is only slightly different.

Keywords


steganography; bit-plane; BPCS; stego-image; fuzzy

Full Text:

PDF

References


REFERENSI

. Bakshi, N. 2007. Steganography. Syracuse University. New York

. Cachin, C. 1996. Digital Steganography. IBM Systems Journal, Zurich, vol. 35, no ¾, hal.131-236.

. Hirohisa, H. 2002. A Data Embedding Method Using BPCS Principle With New Complexity Measures, Proceedings Pacific Rim Workshop on Digital Steganography 2002, vol. 3423, hal.30-47

. Kawaguchi, E. dan Eason, R. O. 1998. Principle and Application of BPCS Steganography. Proceedings of SPIE: Multimedia Systems and Applications, vol.3528, hal. 464–472.

. Kendall & Kendall. 2005. Systems Analysis and Design, Prentice Hall, New Jersey, USA, hal. 310-315.

. Klir, G.J., dan Yuan, B., 1995, Fuzzy Sets and Fuzzy Logic : Theory and Applications. Prentice Hall International Inc., Upper Saddle River, NJ 07458.

. Kusumadewi, S., dan Guswaludin, I., 2005, Fuzzy Multi Criteria Decision Making, Jurnal Media Informatika Jurusan Teknik Informatika Fakultas Teknologi Industri Universitas Islam Indonesia nomor 1 volume 3 halaman 25-38, Juni 2005, http://www.uii.ac.id, diakses 23 November 2010.

. Kusumadewi, S. 2002, “Analisis Desain Sistem Fuzzy menggunakan Tool Box Matlab”, Graha Ilmu, Jogjakarta.

. Miano, J. 1999. Compressed Image File Format JPEG, PNG, GIF, XBM, BMP, Addison Wesley, Massachusetts, USA, hal. 220-223.

. Pressman, R.S., 2002, Software Engineering, A Practitioner’s Approach, 5th Edition, McGraw-Hill, Inc. New York.

. Shi, P. dan Li, Z. 2010. An improved BPCS Steganography based on Dynamic Threshold. 2010 International Conference on Multimedia Information Networking and Security. vol.32, hal. 231-259.

. Srinivasan, Y. 2003. “High Capacity Data Hiding System Using BPCS Steganography”. Thesis. Texaz Tech University. Texas. Hal 20-25

. Widyanarko, A. 2007. Implementasi Steganografi dengan Metode Bit-Plane Complexity Segmentation (BPCS) untuk Dokumen Citra Terkompresi. Skripsi. ITB. Bandung. hal 87-88.




DOI: https://doi.org/10.17529/jre.v11i3.2238

Refbacks



View My Stats