PERAN SERAT PADA MODULASI MIKROBIOTA USUS PASIEN DIABETES MELITUS TIPE 2

Marisa Marisa

Abstract


Abstrak. Diabetes Melitus tipe 2 (DM tipe 2) merupakan penyakit degeneratif dengan prevalensi yang terus meningkat dari tahun ke tahun. Salah satu variabel penting pada tatalaksana DM tipe 2 secara global saat ini adalah mikrobiota usus. Pada DM tipe 2 terjadi disbiosis mikrobiota usus, yang akan menyebabkan chronic systemic low grade inflammation yang mendasari gangguan metabolik. Jumlah Bifidobacterium yang merupakan bakteri komensal yang berperan dalam menjaga barrier usus, berkurang pada pasien DM tipe 2. Mikrobiota ini dapat memperbaiki permeabilitas usus dan mencegah disbiosis dengan cara menjaga barrier usus. Pada DM tipe 2 juga terdapat penurunan jumlah Akkermansia muciniphila. Pada beberapa penelitian disebutkan bahwa mikrobiota ini berkorelasi negatif dengan DM tipe 2, obesitas, dan profil gangguan metabolisme glukosa. Mikrobiota usus dipengaruhi oleh berbagai faktor, dan diet termasuk serat, merupakan faktor utama yang mempengaruhinya. Artikel ini membahas efek modulasi serat terhadap mikrobiota usus spesifik pada DM tipe 2, sehingga dapat dijadikan sebagai target penatalaksanaan DM tipe 2 di masa yang akan datang. (JKS 2016; 2: 109-113)

 

Kata kunci: mikrobiota usus, DM tipe 2, diet, serat

 

Abstract. Type 2 Diabetes Melitus (T2DM)) is a degenerative disease with growing prevalence year by year. One of the important variables in the treatment of T2DM globally nowadays is the gut microbiota. There is a gut microbiota dysbiosis in T2DM, and leads to chronic low grade systemic inflammation underlying metabolic disorders. The number of Bifidobacterium, a commensal bacteria that play a role in keeping the intestinal barrier, reduced in T2DM patient. This microbiota can improve intestinal permeability and prevent dysbiosis of gut microbiota by maintaining the intestinal barrier. In T2DM, there was also a decline number of Akkermansia muciniphila. Researchs revealed that this microbiota negatively correlated with T2DM, obesity, and profiles of glucose metabolic disorders. Gut microbiota is influenced by a variety of factors, and diet including dietary fiber, is the main factors that influence it. This article present an information about the effects of dietary fiber on modulation of specific gut microbiota in T2DM, so it can be used as the target of the management of T2DM in the future. (JKS 2016; 2: 109-113)

 

Keywords: gut microbiota, T2DM, diet, dietary fiber


Keywords


Mikrobiota usus, DM tipe 2, diet, serat Gut microbiota, T2DM, diet, dietary fiber

Full Text:

PDF

References


Daftar Pustaka

Gillilland MG, Young VB, Huffnagle GB. Gastrointestinal Microbial Ecology with Perspective on Health and Disease. In: Johnson LR, Ghishan FK, Kaunitz JD, Merchant JL, Said HM, Wood JD, editors. Physiology of the Gastronintestinal TractPhiladelphia: Elsevier Inc.; 2012. p. 1119–34.

Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev2010;90(3):859–904.

Kovatcheva-datchary P, Tremaroli V, Ba F, Medicine C. The Gut Microbiota. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013 p. 2–24.

Cheng J, Palva AM, DeVos WM, Satokari R. Contribution of the Intestinal Microbiota to Human Health : From Birth to 100 Years of Age. In: Current Topics in Microbiology and Immunology. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg; 2013. p. 323–46.

Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489(7415):220–30.

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Ley RE, Sogin ML, et al. A core gut microbiome in obese and lean twins. Nature2009;457(32089):480–4.

Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 2009;9:123–8.

Azad MB, Konya T, Guttman DS, Field CJ, Chari RS, Sears MR, et al. Impact of cesarean section delivery and breastfeeding on infant gut microbiota at one year of age. Allergy, Asthma Clin Immunol 2014;10(Suppl 1):A24.

Taggart H, Bergstorm H. An Overview of the Microbiome and the Effects of Antibiotics. TJNP J Nurse Pract 2014;10(7):445–50.

Hur KY, Lee MS. New mechanisms of metformin action: Focusing on mitochondria and the gut. J Diabetes Investig2015;6(6):600–9.

Delzenne NM, Cani PD, Everard A, Neyrinck AM, Bindels LB. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia2015;58(10):2206–17.

Kootte RS, Vrieze A, Holleman F, Dallinga-Thie GM, Zoetendal EG, de Vos WM, et al. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes melitus. Diabetes, Obes Metab2012;14(2):112–20.

Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res2013;69(1):52–60.

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y, Sue A, et al. Lingking Long-Term Dietary Patterns with Gut MIcrobial Enterotypes. Science2012;334(6052):105–8.

ILSE Europe. Role of the GI Tract Microbiota in Health and Disease. In: Ilsi Europe Concise Monograph Series Probiotics , Prebiotics. Brussels; 2013. p. 4–10.

Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen Y-Y, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 2009;137(5):1716–24.

Kabeerdoss J, Devi RS, Mary RR, Ramakrishna BS. Short Communication faecal microbiota composition in vegetarians : comparison with omnivores in a cohort of young women in southern India. Br J Nutr2012;108:953–7.

Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JBL, Nieuwdorp M. The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 2010;53(4):606–13.

D’Aversa F, Tortora A, Ianiro G, Ponziani FR, Annicchiarico BE, Gasbarrini A. Gut microbiota and metabolic syndrome. Intern Emerg Med2013;8 Suppl 1:S11–5.

Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 2012;3(4):279–88.

Larsen N, Vogensen FK, Berg FWJ Van Den, Nielsen DS, Sofie A, Pedersen BK, et al. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS One 2010;5(2).

Wang J, Qin J, Li Y, Cai Z, Li S, Zhu J, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature2012;490(7418):55–60.

Turroni F, Ribbera A, Foroni E, van Sinderen D, Ventura M. Human gut microbiota and bifidobacteria: from composition to functionality. Antonie Van Leeuwenhoek 2008;94(1):35–50.

Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011;469(7331):543–7.

Fukuda S, Ohno H. Gut microbiome and metabolic diseases. Semin Immunopathol 2014;36(1):103–14.

Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients [Internet]. 2013;5(4):1417–35.

Van den Broek LAM, Hinz SWA, Beldman G, Vincken J-P, Voragen AGJ. Bifidobacterium carbohydrases-their role in breakdown and synthesis of (potential) prebiotics. Mol Nutr Food Res 2008;52(1):146–63.

Hamaker BR, Tuncil YE. A Perspective on the Complexity of Dietary Fiber Structures and Their Potential Effect on the Gut Microbiota. J Mol Biol 2014;(xx):1–12.

Meyer D, Stasse-Wolthuis M. The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur J Clin Nutr 2009;63(11):1277–89.

Ramirez_Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 2009;101:541–50.

Frohberg C, Costabile A, Kolida S, Klinder A, Gietl E, Ba M, et al. Bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. Br J Nutr2010;104:1007–17.

Flint HJ, Graf D, DiCagno R, Fa F, Nyman M, Saarela M, et al. Contribution of diet to the composition of the human gut microbiota. Microb Ecol2015;1:1–11.

Li F, Hullar MAJ, Schwarz Y, Lampe JW. Human gut bacterial communities are altered by addition of cruciferous vegetables to a controlled fruit- and vegetable-free diet. J Nutr2009;139(9):1685–91.

Shinohara K, Ohashi Y, Kawasumi K, Terada A, Fujisawa T. Effect of apple intake on fecal microbiota and metabolites in humans. Anaerobe 2010;16(5):510–5.

Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol2013;27(1):73–83.

Walsh CJ, Guinane CM, Toole PWO, Cotter PD. Beneficial modulation of the gut microbiota. FEBS Lett2014; 1-10

Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2014;1–12.

Klinder A, Shen Q, Heppel S, Lovegrove JA, Rowland I, Tuohy K. Impact of increasing fruit and vegetable and flavonoid intake on the human gut microbiota. Food Funct 2016; 1-9


Refbacks

  • There are currently no refbacks.



Creative Commons LicenseISSN: 1411-3848E-ISSN: 2579-6372
Copyright© 1987-2017 | ISSN: 1412-1026 | EISSN: 2550-0112 
Jurnal Kedokteran Syiah Kuala is licensed under a Creative Commons Attribution 4.0 International License.

 

Published by:
Fakultas Kedokteran, Universitas Syiah Kuala
 
Jl. Tgk. Tanoh Abee, Kopelma Darussalam,
Banda Aceh, 23111, Indonesia.
Phone: +626517551843 
Email: jks@unsyiah.ac.id


Online Submissions & Guidelines | Editorial Policies | Contact | Statistics | Indexing | Citations