PERAN INTERFERON GAMMA PADA INFEKSI MYCOBACTERIUM TUBERCULOSIS

Nur Wahyuniati, M.Imun M.Imun

Abstract


Abstrak. Penyakit tuberkulosis masih tetap merupakan masalah kesehatan yang utama di dunia. Penyakit ini menyebabkan angka kesakitan yang tinggi pada jutaan penduduk dunia setiap tahunnya. Mycobacterium tuberkulosis (M.Tb) memiliki kemampuan aktifitas replikasi dan metabolisme yang tinggi dan memiliki kemampuan untuk bertahan hidup di dalam fagosit profesional. Respon imun seluler sangat berperan penting untuk proses eliminasi M. Tb. Sel TH1 yang teraktivasi akan mengeluarkan interferon gamma yang akan mengaktivasi makrofag. Interferon gamma memiliki peran yang sangat penting dalam imunitas protektif terhadap infeksi M.Tb.

Kata kunci: Tuberkulosis, Mycobacterium tuberculosis, respon T­H1, Interferon gamma

 Abstract. Tuberculosis remains a major health problem in the world. This disease causes a high morbidity rate in millions of the world's population each year. Mycobacterium tuberculosis (M.Tb) has high replication and metabolism activity and has the ability to survive in professional phagocytes. Cellular immune responses play an important role in the elimination process of M. Tb. The activated TH1 cell will secrete interferon gamma that leads to activation of macrophages. Interferon gamma has a very important role in protective immunity against infection M.Tb.

 

 Keywords: Tuberculosis, Mycobacterium tuberculosis, T1 response, Interferon gamma


Keywords


Tuberkulosis; Tuberculosis

References


Daftar Pustaka

Abbas AK, Lichtman AH. Cellular and molecular immunology. Philadelphia: Elsevier; 2012.

Flynn JL. Immunology of tuberculosis and implications in vaccine development. Tuberculosis. 2004;84:93-101.

Nicod LP. Immunology of tuberculosis. Swiss Med Wkly. 2007;137:357 – 62.

WHO. Global Tuberculosis Report 2012. World Health Organization, 2012.

WHO. Global tuberculosis control 2009 - epidemiology, strategy, financing: World Health Organization; 2009 [cited 2012 October].

Jawetz E, Melnick JL, Adelberg EA. Mikobakteria. Mikrobiologi kedokteran. Jakarta: EGC; 1996. p. 302-9.

Ernst JD, Wolf A. Mycobacterium tuberculosis: mechanisms of phagocytosis and intracellular survival. In: Ernst JD, Stendahl O, editors. Advances in Molecular and Cellular Microbiology - Phagocytosis of Bacteria and Bacterial Pathogenicity. 12. New York: Cambridge University Press; 2006. p. 246-72.

Kayser FH. Mycobacterium. In: Kayser FH, Bienz KA, Eckert J, Zinkernagel RM, editors. Medical Microbiology. Stuttgart: Thieme; 2005. p. 262-8.

Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan Ja, Monahan IM, et al. Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. The Journal of experimental medicine. 2003;198:693-704.

Peters W, Cyster JG, Mack M, Wolf AJ, Ernst JD, Israel F, et al. CCR2-Dependent Trafficking of F4/80dim Macrophages and CD11cdim/intermediate Dendritic Cells Is Crucial for T Cell Recruitment to Lungs Infected with Mycobacterium tuberculosis. The Journal of Immunology. 2004;172:7647-53.

Peters W, Ernst JD. Mechanisms of cell recruitment in the immune response to Mycobacterium tuberculosis. Microbes and infection / Institut Pasteur. 2003;5:151-8.

Peters W, Scott HM, Chambers HF, Flynn JL, Charo IF, Ernst JD. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:7958-63.

Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM, Chackerian AA, et al. Dissemination of Mycobacterium tuberculosis Is Influenced by Host Factors and Precedes the Initiation of T-Cell Immunity Dissemination of Mycobacterium tuberculosis Is Influenced by Host Factors and Precedes the Initiation of T-Cell Immunity. 2002.

Flynn JL, Chan J. Immunology of tuberculosis. Annual review of immunology. 2001;19:93-129.

Schreiber GH, Schreiber RD. Interferon-gamma. In: Thomson AW, Lotze MT, editors. The Cytokine Handbook. 1. Fourth ed. California-USA: Academic Press-Elsevier; 2003. p. 567-602.

Czarniecki CW, Sonnenfeld G. Clinical Applications of Interferon-gamma. In: Meager A, editor. The Interferons: Characterization and Application Edited by Anthony Meager. Weinheim: WILEY-VCH Verlag GmbH & Co; 2006. p. 309-31.

Naylor SL, Sakaguchi AY, Shows TB, Law ML, Goeddel DV, Gray PW. Human immune interferon gene is located on chromosome 12. J ExpMed. 1983;157:1020-7.

Gallin JI, Farber JM, Holland SM, Nutman TB. Interferon-gamma in the management of infectious diseases. Ann Intern Med. 1995;123:216-24.

Young HA, Bream JH. IFN-γ : Recent Advances in Understanding Regulationof Expression, Biological Functions, and Clinical Applications. In: Pitha PM, editor. Current Topics in Microbiology Interferon: The 50th Anniversary. 316. Berlin Heidelberg: Springer-Verlag; 2007. p. 97-117.

Farrar MA, Schreiber RD. The molecular cell biology of Interferon-gamma and its receptor. Annu Rev Immunol. 1993;11:571-611.

Okamura H, Tsutsui H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, et al. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature. 1995;378:88 - 91.

Szabo SJ, Sullivan BM, Peng SL, Glimcher LH. Molecular mechanisms regulating Th1 immune responses. Annual Review of Immunology. 2003;21:713-58.

Bocek P, Foucras G, Paul WE. Interferon gamma enhances both in vitro and in vivo priming of CD4+ T cells for IL-4 production. J Exp Med. 2004;199:1619-30.

Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat Immunol. 2001; 2:816-22.

Mashruwala MA, Smith AK, Lindsey DR, Moczygemba M, Wetsel Ra, Klein JR, et al. A defect in the synthesis of Interferon-γ by the T cells of Complement-C5 deficient mice leads to enhanced susceptibility for tuberculosis. Tuberculosis (Edinburgh, Scotland). 2011;91 Suppl 1:S82-9.

Robinson CM, Jung J-Y, Nau GJ. Interferon-γ, tumor necrosis factor, and interleukin-18 cooperate to control growth of Mycobacterium tuberculosis in human macrophages. Cytokine. 2012;60:233-41.

Ray JCJ, Wang J, Chan J, Kirschner DE. The timing of TNF and IFN-gamma signaling affects macrophage activation strategies during Mycobacterium tuberculosis infection. Journal of theoretical biology. 2008;252:24-38.

Harris J, Haro SD, Deretic V. Autophagy and Mycobacterium tuberculosis. In: Deretic V, editor. Autophagy in Immunity and Infection. Weinheim: WILEY-VCH Verlag GmbH & Co; 2006. p. 129-35.

Münz C. Enhancing immunity through autophagy. Annu Rev Immunol. 2009;27:421-9.

Dutta RK, Kathania M, Raje M, Majumdar S. IL-6 inhibits IFN-γ induced autophagy in Mycobacterium tuberculosis H37Rv infected macrophages. The international journal of biochemistry & cell biology. 2012;44:942-54.

Harris J, Haro SAD, Master SS, Keane J, Roberts EA, Delgado M, et al. T Helper 2 Cytokines Inhibit Autophagic Control of Intracellular Mycobacterium tuberculosis. Immunity. 2007;27:505-17.

Nagabhushanam V, Solache A, Ting L-M, Escaron CJ, Zhang JY, Ernst2 JD. Innate Inhibition of Adaptive Immunity: Mycobacterium tuberculosis-Induced IL-6 Inhibits Macrophage Responses to IFN-γ. J Immunol. 2003;171:4750-7.




DOI: https://doi.org/10.24815/jks.v18i2.18005

Refbacks

  • There are currently no refbacks.



Creative Commons LicenseISSN: 1411-3848E-ISSN: 2579-6372
Copyright© 1987-2017 | ISSN: 1412-1026 | EISSN: 2550-0112 
Jurnal Kedokteran Syiah Kuala is licensed under a Creative Commons Attribution 4.0 International License.

 

Published by:
Fakultas Kedokteran, Universitas Syiah Kuala
 
Jl. Tgk. Tanoh Abee, Kopelma Darussalam,
Banda Aceh, 23111, Indonesia.
Phone: +626517551843 
Email: jks@unsyiah.ac.id


Online Submissions & Guidelines | Editorial Policies | Contact | Statistics | Indexing | Citations