irma yanti rangkuti


Abstrak. Latar Belakang. Kanker payudara merupakan penyakit berlebihnya pertumbuhan atau tidak terkendalinya perkembangan sel kanker payudara. Kanker merupakan suatu penyakit yang disebabkan kelainan genetik berupa mutasi DNA yang menyebakan hilangnya kontrol pertumbuhan. Gangguan genetik ini menyebabkan terganggunya siklus sel dan apoptosis. Metformin merupakan suatu antihiperglikemik yang digunakan pada pasien diabetes melitus tipe 2. Penurunan risiko kanker terjadi pada pasien diabetes melitus tipe 2 yang menggunakan metformin. Uji sitotoksik untuk agen anti kanker merupakan uji skrining awal untuk menilai potensi efek anti kanker. Tujuan penelitian ini adalah untuk mengetahui efek sitotoksik metformin hidroklorida terhadap pertumbuhan sel kanker payudara T47D. Metode: Penelitian ini merupakan penelitian eksperimental uji invitro terhadap sel kanker payudara T47D yang dipaparkan metformin HCl konsentrasi 5000; 2500; 1250; 312.5 dan 156,25 μM selama 24 jam. Sebagai pembanding digunakan paclitaxel konsentrasi 1000; 500; 250; 31,25 dan 15,625 nM. Uji sitotoksik menggunakan metode MTT untuk menentukan IC50.Data dianalaisis menggunakan analisa probit. Hasil : IC50  metformin HCl adalah 13457.3 ± 1096,5 μM. IC50 paclitaxel adalah 1577.2 ± 115.3 nM. Efek anti kanker metformin lebih kecil dibanding paclitaxel.


Kata Kunci: Metformin HCl, T47D, uji sitotoksik, IC50


Abstract. Breast cancer is a disease in which there is excessive growth or uncontrolled development of breast tissue cells. Cancer is a disease caused by genetic disorders caused by DNA mutations that cause loss of growth control. This genetic disorder affects the cell cycle and cell apoptosis and causes the formation of cancer. Metformin is an antihyperglycemic in type 2 diabetes mellitus patient. The decrease in cancer risk occured in patients with type 2 diabetes mellitus who used metformin. Cytotoxic test for agent anti cancer  is screening test to investigate the potency cancer effect of substance. The goal of this study was determining the cytotoxic effect of metformin hydrochloride to T47D breast cancer cell. The method : This sudy was experimental study, invitro test to T47D breast cancer cell using metformin HCl 5000; 2500; 1250; 312.5; and 156.25 μM for 24 hours. Paclitaxel used as postiive control with concentration were 1000; 500; 250; 31,25 and 15,625 nM. Cytotoxic test using MTT method to determine IC50. Data were analyzed using probit analysis using SPSS 22 version. The result of cytotoxic test showed that IC50 metformin HCl was 13457.3 ± 1096,5 μM. While IC50 paclitaxel as control was 1577.2 ± 115.3 nM. The effect of cancer metformin HCl was lower than paclitaxel.


Keywords: Metformin HCl, T47D, cytotoxic test, IC50


Metformin HCl, T47D, uji sitotoksik, IC50

Full Text:



Kemenkes R,. Stop Kanker, Jakarta: Pusat Data dan Informasi Kesehatan Republik Indonesia, 2016.

Lacroix, M., Toillon, R.A., Leclercq G, p53 and breast cancer, an update. Endocrine-related cancer. 13. . 2006. 293-325.

Gasco, M and Crook, T. p53 family members and chemoresistance in cancer: what we know and what we need to know, Drug resist updatE, 6, 2003. 323-328.

Olivier, M., Langerod, A., Carrieri, P., The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer, Clin cancer Res, 12, 2006, 1157-1167.

Aas, T., Borresen, A-L., Geisler, S.. Specific p53 mutations are aassociated with denovo resistance to doxorubicin in breast cancer patients, Nat med; 2: 1996. 811-814.

Geisler S, Borresen-Dale AL, Johnsen H. TP53 gen mutations predict the response to neoadjuvant treatment with 5-fluorouracil and mitomycin in locally advanced breast cancer. Clin Cancer Re,. 9: 2003. 5582-5588.

Di Leo, A., Tanner, M., Desmedt, C. P-53 gene mutations as a predictive marker in a population of advanced breast cancer patients randomly treated with doxorubicin or docetaxel in the context of a phase III clinical trial, Ann Oncol.; 18. 2007. P. 997-1003.

Andersson, J., Larsson, L., Klaar, S. Worse survival for TP53 (p53) mutated breast cancer patients receiving adjuvant CMF, Ann Oncol; 16: 2005.743-748.

Lin, C., Huang, H., Chu, F., Fan, H., Chen, H., Chu, D., Wu, L., Wang, C., Chen, W., Lin, S., Ho. S Association between gastroenterological malignancy and diabetes mellitus and anti diabetic therapy: A nationwide, population-based cohort study, Plos one. . 2015.

Franciosi, M., Lucisano, G., Lapice, E., Strippoli, G. F. M., Pellegrini, F., Nicolucci, A Plos one. www. Plosone.org, 8(8). , 2013.

Gandini, S., Puntoni, M., Heckman-Stoddard, B.M., Dunn, B. K., Ford, L., DeCensi, A., Szabo, E. Metformin and cancer risk and mortality: A systematic review and meta-analysis taking into account biases and confounders, Cancer Prev Res (Phila), 7(9), 2014. 867-885.

A. Doyle and G. J. Bryan, Cell and Tissue Culture: Laboratory Procedure in Biotechnology. Chicester: John Willey & Sons, 1998.

E. Meiyanto, R. A. Susidarti, S. Handayani, and F. Rahmi, "Ekstrak Etanolik Biji Buah Pinang (Areca catechu L.) mampu menghambat proliferasi dan memacu apoptosis sel MCF-7," Majalah Farmasi Indonesia, vol. 19, no. 1, . 2008. pp. 12-19

Birsoy, K., Possemato, R., Lorbeer, F. K., Bayraktar, E. C., Thiru, P., Yucel, B., Wang, T., Chen, W.W., Clish, C.B., Sabatini, D.M, Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides, Nature 508: . 2014. 108–112.

Owen, M. R., Doran, E., Halestrap, A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain, Biochem. J., 348, 2000. 607-614.

Wheaton, W.W., Weinberg, S. E., Hamanaka, R. B., Soberanes, S., Sullivan, L. B., Anso, E., Glasauer, A., Dufour, E., Mutlu, G. M., Budigner, G.R.S., Chandel, N. S. Metformin inhibits mitochondrial compleh I of cancer cells to reduce tumorigenesis. eLife. Elifesciences.org. . 2014.

Queiroz, E.A.I.F., Puukila, S., Eichler, R., Sampaio, S.C., Forsyth, H. L., Lees, S. J., Barbosa, A. M., Dekker, R. F. H., Fortes, Z. B., Khaper, N. Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells, Plos one, www.plosone.org, 9(5). 2014.

Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J., Moller, D. E. Role of AMP activated protein kinase in mechanism of metformin action, J Clin Invest, 108: 2001.1167-1174.

Hardie, D. G. AMP-activated protein kinase- an energy sensor that regulates all aspects of cell function. Genes & Development 25: 2011. 1895-1908.

Kim, E. K., Song, M. J., Yoo, E. J., Choe, S. S., Park, S.D., Kim, J. B.. Regulatory role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c. J Biol Chem.,279: 2004. 19970-19975.

Koo, S. H., Flechner, L., Qi, L., Zhang, X., Screaton, R. A., Jeffries, S., Hedrick, S., Xu, W., Boussouar, F., Brindle, P., Takemori, H., Montminy, M. The CREB coactivator TORC2 is akey regulator of fasting glucose metabolism, Nature, 437: . 2005. 1109-1011.

Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., De Pinho, R. A., Cantley, L. C. The tumor supressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Ptoc Natl Acad Sci USA, 101: 2004.3329-35

Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M., Carling, D.. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade, Curr Biol, 13: 2003. 2004-2008.

Wibowo, Y.C., Mahanani, M.R., Budiani, D.R., Mudigdo, A., , Metformin inhibits cyclin D1 expression in a p53-deficient colon cancer cell line in vitro, European Jornal of Cancer, 51 (2). 2015. 20

Cai, X., Hu, X., Cai, B., Wang, Q., Li, Y., Tan, X., Hu, H., Chen, X., Huang, J., Cheng, J., Jing, X. Metformin suppresses hepatocellular carcinoma cell growth through induction of cell cycle G1/G0 phase arrest and p21CIP and p27KIP expression and downregulation of cyclin D1 invitro and invivo, Oncology reports 30, 2013. p. 2449-2457.

Li, P, Zhao, M., Parris, A. B., Feng, X and Yang, X. P53 is required for .metformin-induced growth inhibition, senescence and apoptosis in breast cancer cells, Elsevier, 2015.

Du, Y., Zheng, H., Wang, J., Ren Y., Li, M., Gong, C., Xu, F and Yang, C. Metformin inhibits histone H2B monoubiquitination and downstream gene transcription in human breast cancer cells, Oncology letters 8: 2014.809-812.

Haji, H. A., Sheibak, H., Khosravi, M and Asadi, J.. The effect of metformin on the expression of caspase 3, 8,9 and PARP-1 in human breast cancer cell line T47D, IJHS; 2(2): 2016. 27-30.

DOI: https://doi.org/10.24815/jks.v19i3.10568


  • There are currently no refbacks.

Creative Commons LicenseISSN: 1411-3848E-ISSN: 2579-6372
Copyright© 1987-2017 | ISSN: 1412-1026 | EISSN: 2550-0112 
Jurnal Kedokteran Syiah Kuala is licensed under a Creative Commons Attribution 4.0 International License.


Published by:
Fakultas Kedokteran, Universitas Syiah Kuala
Jl. Tgk. Tanoh Abee, Kopelma Darussalam,
Banda Aceh, 23111, Indonesia.
Phone: +626517551843 
Email: jks@unsyiah.ac.id

Online Submissions & Guidelines | Editorial Policies | Contact | Statistics | Indexing | Citations