### RIGID MOTIONS, REFLECTIONS AND GROUPS

#### Abstract

Rigid motion is a transformation consisting of some rotations and

translations operation which leave a given shape or arrangement

unchanged. In other words, a rigid motion of a shape is a way of moving

the shape without bending tearing or distorting it, so that it looks the

same. Reflectiorl on the other hand, is the operation ofexchanging all

points of a mathematical object with their mirror images (i.e., reflections

in a minor).

This paper is aimed to discuss the set of rigid motion and reflection of

some shapes, together with the operation of compositions which form a

group, called the group of s;rmmetries, of the shape. The operation of

compositions is commonly written in usual order, (for example, if r

means rotation, and ft reflects about horizontal axis-ft, then the operation

ur o h" means we do rigid motion Ir first, followed by r). This paper also

shows that the rigid motion can be wrifien as permutation, but not all

permutations are rigid motion.

Keywords: rigid motion.

#### Full Text:

PDF### Refbacks

- There are currently no refbacks.