\section*{\textbf{\large λ-BACKBONE COLORING NUMBERS OF SPLIT GRAPHS WITH TREE BACKBONES}}

A.N.M. Salman

Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences
Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132, Indonesia
msalman@math.itb.ac.id

\textbf{Abstract.} In the application area of frequency assignment graphs are used to model the topology and mutual interference between transmitters. The problem in practice is to assign a limited number of frequency channels in an economical way to the transmitter in such a way that interference is kept at an acceptable level. This has led to various different types of coloring problem in graphs. One of them is a λ-backbone coloring. Given an integer $\lambda \geq 2$, a graph $G = (V, E)$ and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring of (G, H) is a proper vertex coloring $V \to \{1, 2, \ldots\}$ of G in which the colors assigned to adjacent vertices in H differ by at least λ. The λ-backbone coloring number $BBC_\lambda(G, H)$ of (G, H) is the smallest integer ℓ for which there exists a λ-backbone coloring $f : V \to \{1, 2, \ldots, \ell\}$. In this paper we consider the λ-backbone coloring of split graphs. A split graph is a graph whose vertex set can be partitioned into a clique (i.e. a set of mutually adjacent vertices) and an independent set (i.e. a set of mutually non adjacent vertices), with possibly edges in between. We determine sharp upper bounds for λ-backbone coloring numbers of split graphs with tree backbones.

\section{Introduction}

In [3] backbone colorings are introduced, motivated and put into a general framework of coloring problems related to frequency assignment. We refer to [3] and [2] for an overview of related research, but we repeat the relevant definitions here. For undefined terminology we refer to [1].

Let $G = (V, E)$ be a graph, where $V = V_G$ is a finite set of vertices and $E = E_G$ is a set of unordered pairs of two different vertices, called edges. A function $f : V \to \{1, 2, 3, \ldots\}$ is a vertex coloring of V if $|f(u) - f(v)| \geq 1$ holds for all edges $uv \in E$. A vertex coloring $f : V \to \{1, \ldots, k\}$ is called a k-coloring, and the chromatic number $\chi(G)$ is the smallest integer k for which there exists a k-coloring. A set $V' \subseteq V$ is independent if G does not contain edges with both end vertices in V'. By definition, a k-coloring partitions V into k independent sets V_1, \ldots, V_k.

Let H be a spanning subgraph of G, i.e., $H = (V_G, E_H)$ with $E_H \subseteq E_G$. Given an integer $\lambda \geq 2$, a vertex coloring f of G is a λ-backbone coloring of (G, H), if $|f(u) - f(v)| \geq \lambda$ holds for all edges $uv \in E_H$. The λ-backbone coloring number $BBC_\lambda(G, H)$ of (G, H) is the smallest integer ℓ for which there exists a λ-backbone coloring $f : V \to \{1, \ldots, \ell\}$.

A path is a graph P whose vertices can be ordered into a sequence v_1, v_2, \ldots, v_n such that $E_P = \{v_1v_2, \ldots, v_{n-1}v_n\}$. A cycle is a graph C whose vertices can be ordered into a sequence v_1, v_2, \ldots, v_n such that $E_C = \{v_1v_2, \ldots, v_{n-1}v_n, v_nv_1\}$. A tree is a connected graph T that does not contain any cycles.

A complete graph with an edge between every pair of vertices. The complete graph on n vertices is denoted by K_n. A graph G is complete p-partite if its vertices can be partitioned into p nonempty independent sets V_1, \ldots, V_p such that its edge set E is formed by all edges that have one end vertex in V_i and the other one in V_j for some $1 \leq i < j \leq p$.

A star S_r is a complete 2-partite graph with independent sets $V_1 = \{r\}$ and V_2 with $|V_2| = q$; the vertex r is called the root and the vertices in V_2 are called the leaves of the star S_r. In our context a matching M is a collection of pairwise disjoint stars that are all copies of S_1. We call a spanning subgraph H of a graph G

- a tree backbone of G if H is a (spanning) tree;
- a star backbone of G if H is a collection of pairwise disjoint stars;
- a matching backbone of G if H is a (perfect) matching.

Obviously, $BBC_\lambda(G, H) \geq \chi(G)$ holds for any backbone H of a graph G. In order to analyze the maximum difference between these two numbers the following values can be introduced.
\[T_\lambda(k) = \max \{ \text{BBC}_\lambda(G, T) \mid T \text{ is a tree backbone of } G, \text{ and } \chi(G) = k \} \]
\[S_\lambda(k) = \max \{ \text{BBC}_\lambda(G, S) \mid S \text{ is a star backbone of } G, \text{ and } \chi(G) = k \} \]
\[M_\lambda(k) = \max \{ \text{BBC}_\lambda(G, M) \mid M \text{ is a matching backbone of } G, \text{ and } \chi(G) = k \} . \]

For the case \(\lambda = 2 \), the behavior of the first values is determined in [3] as summarized in the following result.

Theorem 1.1. \(T_2(k) = 2k - 1 \) for all \(k \geq 1 \).

The above theorem shows the relation between the 2-backbone coloring number and the classical chromatic number in case the backbone is a tree. The 2-backbone coloring number roughly grow like 2\(k \), where \(\chi = k \). In [4], we studied the other two cases: We first determined all values \(S_\lambda(k) \), and observed that they roughly grow like \((2 - \frac{1}{\lambda})k\). Then we determined all values \(M_\lambda(k) \) and observed that they roughly grow like \((2 - \frac{2}{\lambda + 1})k\). Their precise behavior is summarized in the two following theorems.

Theorem 1.2. For \(\lambda \geq 2 \) the function \(S_\lambda(k) \) takes the following values:

(a) \(S_\lambda(2) = \lambda + 1 \);
(b) for \(3 \leq k \leq 2\lambda - 3 \): \(S_\lambda(k) = \lfloor \frac{3k}{2} \rfloor + \lambda - 2 \);
(c) for \(2\lambda - 2 \leq k \leq 2\lambda - 1 \) with \(\lambda \geq 3 \): \(S_\lambda(k) = k + 2\lambda - 2 \); \(S_2(3) = 5 \);
(d) for \(k = 2\lambda \) with \(\lambda \geq 3 \): \(S_\lambda(k) = 2k - 1 \); \(S_2(4) = 6 \);
(e) for \(k \geq 2\lambda + 1 \): \(S_\lambda(k) = 2k - \lfloor \frac{k}{\lambda} \rfloor \).

Theorem 1.3. For \(\lambda \geq 2 \) the function \(M_\lambda(k) \) takes the following values:

(a) for \(2 \leq k \leq \lambda \): \(M_\lambda(k) = \lambda + k - 1 \);
(b) for \(\lambda + 1 \leq k \leq 2\lambda \): \(M_\lambda(k) = 2k - 2 \);
(c) for \(k = 2\lambda + 1 \): \(M_\lambda(k) = 2k - 3 \);
(d) for \(k = t(\lambda + 1) \) with \(t \geq 2 \): \(M_\lambda(k) = 2t\lambda - 2 \);
(e) for \(k = t(\lambda + 1) + c \) with \(t \geq 2 \): \(1 \leq c < \frac{k+3}{2} \): \(M_\lambda(k) = 2t\lambda + 2c - 1 \);
(f) for \(k = t(\lambda + 1) + c \) with \(t \geq 2 \): \(\frac{k+3}{2} \leq c \leq \lambda \): \(M_\lambda(k) = 2t\lambda + 2c - 2 \).

A split graph is a graph whose vertex set can be partitioned into a clique (i.e. a set of mutually adjacent vertices) and an independent set (i.e. a set of mutually nonadjacent vertices), with possibly edges in between. The size of a largest clique and the size of a largest independent set in \(G \) are denoted by \(\omega(G) \) and \(\alpha(G) \), respectively. Split graphs were introduced by Hammer and Földes [7]; see also the book [6] by Golumbic. They form an interesting subclass of the class of perfect graphs. Hence, split graphs satisfy \(\chi(G) = \omega(G) \).

The sharp upper bounds for the \(\lambda \)-backbone coloring numbers of split graphs with star or matching backbones are determined in [5] as follows.

Theorem 1.4. Let \(\lambda \geq 2 \) and let \(G = (V, E) \) be a split graph with \(\chi(G) = k \geq 2 \). For every star backbone \(S = (V, E_S) \) of \(G \),

\[
\text{BBC}_\lambda(G, S) \leq \begin{cases}
 k + \lambda & \text{if either } k = 3 \text{ and } \lambda \geq 2 \text{ or } k \geq 4 \text{ and } \lambda = 2 \\
 k + \lambda - 1 & \text{in the other cases.}
\end{cases}
\]

The bounds are tight.

Theorem 1.5. Let \(\lambda \geq 2 \) and let \(G = (V, E) \) be a split graph with \(\chi(G) = k \geq 2 \). For every matching backbone \(M = (V, E_M) \) of \(G \),

\[
\text{BBC}_\lambda(G, M) \leq \begin{cases}
 \lambda + 1 & \text{if } k = 2 \\
 k + 1 & \text{if } k \geq 3 \text{ and } \lambda \leq \min\{k, \frac{k+5}{2}\} \\
 k + 2 & \text{if } k = 9 \text{ or } k \geq 11 \text{ and } \frac{k+5}{2} \leq \lambda \leq k \\
 \lfloor \frac{k}{2} \rfloor + \lambda & \text{if } k = 3, 5, 7 \text{ and } \lambda \geq k \\
 \lfloor \frac{k}{2} \rfloor + \lambda + 1 & \text{if } k = 4, 6 \text{ or } k \geq 8 \text{ and } \lambda \geq \lfloor \frac{k}{2} \rfloor + 1.
\end{cases}
\]

The bounds are tight.

In this paper we study the special case of \(\lambda \)-backbone colorings of split graphs with tree backbones. In the next section we present sharp upper bounds for the \(\lambda \)-backbone coloring numbers of split graphs with tree backbones.
2. Split graphs with tree backbones

In 2003 Broersma et al. [3] determined sharp upper bounds for the λ-backbone coloring numbers of split graphs along trees for λ = 2 as summarized in the following theorem.

Theorem 2.1. Let $G = (V, E)$ be a split graph with $\chi(G) = k \geq 1$. For every tree backbone $T = (V, E_T)$ of G,

$$\BBC_\lambda(G, T) \leq \begin{cases} 1 & \text{if } k = 1 \\ 3 & \text{if } k = 2 \\ k + 2 & \text{if } k \geq 3. \end{cases}$$

The bound is tight.

We study λ-backbone colorings of split graphs along trees for other values of λ and generalize the result in Theorem 2.1 as follows.

Theorem 2.2. Let $\lambda \geq 2$ and let $G = (V, E)$ be a split graph with $\chi(G) = k \geq 1$. For every tree backbone T of G,

$$\BBC_\lambda(G, T) \leq \begin{cases} 1 & \text{if } k = 1 \\ 1 + \lambda & \text{if } k = 2 \\ k + \lambda & \text{if } k \geq 3. \end{cases}$$

The bounds are tight.

Proof of the upper bounds. Let $G = (V, E)$ be a split graph with a spanning tree $T = (V, E_T)$. Let C and I be a partition of V such that C with $|C| = k$ is a clique of maximum size, and such that I is an independent set. Since split graphs are perfect, $\chi(G) = \omega(G) = k$. The case $k = 1$ is trivial. If $k = 2$ then G is bipartite, and we use colors 1 and $\lambda + 1$. For $k \geq 3$, we consider the restriction of the tree T to the vertices in C, and we distinguish two cases.

In the first case, the restriction of T to C forms a star $K_{1,k-1}$. Let v_1, \ldots, v_{k-1} denote the $k - 1$ leaves of this star, and let v_k denote its center. For $i = 1, \ldots, k - 1$ we color v_i with color i, and we color v_k with color $k + \lambda - 1$. This yields a λ-backbone coloring for the vertices in C. All vertices $u \in I$ are leaves in the tree T. Any vertex $u \in I$ with $uv_k \notin E_T$ can be safely colored with color $k + \lambda$. It remains to consider vertices $u \in I$ with $uv_k \in E_T$. In the graph G, such a vertex u is nonadjacent to at least one of the vertices v_1, \ldots, v_{k-1}. Say to vertex v_j (otherwise, the clique C could be augmented by vertex u and would not be of maximum size as we assumed). In this case we may color u with color j.

In the second case, the restriction of T to C does not form a star. In this case the restriction of T to C has a proper 2-coloring $C = C_1 \cup C_2$ with $|C_1| = a \geq |C_2| = b \geq 2$. Then there exist a vertex $x \in C_1$ and a vertex $y \in C_2$ for which $xy \notin E_T$. Let $v_1, \ldots, v_a = x$ be an enumeration of the vertices in C_1, and let $y = v_{a+1}, \ldots, v_{a+b}$ be an enumeration of the vertices in C_2. For $i = 1, \ldots, a$ we color vertex v_i with color $i + 1$. For $i = 1, \ldots, b$ we color vertex v_{a+i} with color $a + \lambda + i - 1$. This yields a λ-backbone coloring of C with colors in $\{2, \ldots, k + \lambda - 1\}$. We color each vertex $u \in I$ with color

$$\begin{cases} k + \lambda & \text{if } uv \in E_T \text{ and } v \in C_1 \\ 1 & \text{if } uv \in E_T \text{ and } v \in C_2. \end{cases}$$

This yields a λ-backbone $(k + \lambda)$-coloring of (G, T), since the colors of a vertex v_i with $i \in \{1, \ldots, a\}$ and of any vertex $u \in I$ such that $uv_i \in E_T$ have distance at least $k + \lambda - (i + 1) \geq k + \lambda - (k - 2 + 1) > \lambda$, and since the colors of a vertex v_i with $i \in \{a + 1, \ldots, b\}$ and of any vertex $u \in I$ such that $uv_i \in E_T$ have distance at least $a + \lambda + i - 1 - 1 \geq k/2 + \lambda - 1 \geq \lambda$.

Proof of the tightness of the bounds. The case $k = 1$ and $k = 2$ are trivial. For $k \geq 3$, we consider a split graph with a clique of k vertices v_1, \ldots, v_k and with an independent set of $(k - 2)(k - 1)/2$ vertices $u_{i,j}$ with $1 \leq i < j \leq k - 1$. Every vertex $u_{i,j}$ is adjacent to all vertices v_s with $s \neq i$. The tree backbone T contains the $k - 1$ edges v_kv_s with $1 \leq s \leq k - 1$. The vertices $u_{i,j}$ form the leaves of T; in the tree, vertex $u_{i,j}$ is adjacent only to v_j. Clearly, $\chi(G) = k$.

Suppose to the contrary that $\BBC_\lambda(G, T) \leq k + \lambda - 1$, and consider such a backbone coloring. The vertices v_1, \ldots, v_k in the clique must be colored with k pairwise distinct colors. Since they form a star, either vertex v_k has color 1, and colors 2, \ldots, λ are not used on the clique, or vertex v_k has color $k + \lambda - 1$, and colors $k, \ldots, k + \lambda - 2$ are not used on the clique. Both cases are symmetric, and we assume without loss of generality that v_k has color
$k+\lambda -1$ and that colors $k, \ldots, k+\lambda -2$ are not used on the clique. Let v_i be the vertex that has color $k-2$, and let v_j be the vertex that has color $k-1$. The vertex $u_{i,j}$ is adjacent to all clique vertices except v_i; hence, it could only be colored with color $k-2$ or with a color in $\{k, \ldots, k+\lambda -2\}$. But these λ colors are forbidden for $u_{i,j}$, since in the tree backbone it is adjacent to vertex v_j with color $k-1$. Since there is no feasible color for $u_{i,j}$, we arrive at the desired contradiction.

3. Acknowledgments

This research was supported by the Research Fund of Institut Teknologi Bandung, Program: Riset Unggulan ITB 2006.

References