Student’s Anticipation Profile at Rigor Level in Determining Papaya Tree Root Dimensions

Erfan Yudianto, Sunardi Sunardi, Titik Sugiarti, Feny Rita Fiantika

Abstract


Students with a rigor level of geometric thinking can analytically solve problems, yet the ability may not be readily observable. Thus, an example of how students solve problems merits explorations. Inspired by student’s problem solving, this study aimed to examine the student’s anticipatory profile in determining Papaya tree roots' dimensions. This qualitative research utilized tests and interview. Two tests were carried out: van Hiele geometric level grouping test for selecting the research participants and the report-based test for the actual project. Seventeen students took the van Hiele test, and one of them, who achieved the rigor level, was selected for the interview. Data obtained from the interview were then analyzed qualitatively. The study showed that students with a rigor level of geometric thinking anticipated analytically. The subject was able to explain a geometric problem systematically, starting from analyzing problems, clarifying detailss, to presenting arguments clearly and precisely. The findings in this study generate useful information for teachers who train their students to analyze a geometric problem correctly and adequately.

Keywords


anticipation, analytic anticipation, anticipation rigor level, van Hiele, fractal

Full Text:

PDF

References


Adams, A. E., Pegg, J., & Case, M. (2015). Anticipation guides: reading for mathematics understanding. Retrieved from http://www.nctm.org/Publications/Mathematics-teacher/2015/Vol108/Issue7/Anticipation-Guides_-Reading-for-Mathematics-Understanding/

Ayazgök, B., & Aslan, H. (2014). The review of academic perception, level of metacognitive awareness and reflective thinking skills of science and mathematic university students. Procedia - Social and Behavioral Sciences, 141, 781–790. https://doi.org/10.1016/j.sbspro.2014.05.137

Chudin, S., Rosyidah, K., Azizah, Y. N., Margaretha, P. M., Irawan, D., Sunardi, & Yudianto, E. (2015). Perhitungan dimensi fraktal boxpori sebagai inovasi resapan penanggulangan banjir dengan induksi geometri fraktal. In Suharto (Ed.), Seminar Nasional Pendidikan dan Pameran Produk Akademik FKIP Universitas Jember (pp. 939–945). Jember: FKIP UNEJ.

Dewi, R. A. M., Dari, R. R., & Elita, I. (2016). Geometri fraktal untuk re-desain motif batik gajah oling Banyuwangi. Jurnal Pendidikan Matematika, 5(2), 222–230.

Harel, G. (2008). DNR perspective on mathematics curriculum and instruction, Part I : Focus on proving. ZDM Mathematics Education, 40, 487–500. https://doi.org/10.1007/s11858-008-0104-1

Houston, K. (2010). 10 ways to think like a mathematician. Retrieved from www.kevinhousten.net

Jahn, J. L. S., & Myers, K. K. (2015). “When will i use this?” how math and science classes communicate impressions of STEM careers: Implications for vocational anticipatory socialization. Communication Studies. https://doi.org/10.1080/10510974.2014.990047

Kemendikbud. (2017). Matematika SMP/MTs kelas VII. Jakarta: Pusat Kurikulum dan Perbukuan, Balitbang, Kemdikbud.

Kivkovich, N. (2015). A tool for solving geometric problems using mediated mathematical discourse (for Teachers and Pupils). Procedia-Social and Behavioral Sciences, 209, 519–525. https://doi.org/10.1016/j.sbspro.2015.11.282

Klein, E., Bieck, S. M., Bloechle, J., Huber, S., Bahnmueller, J., Willmes, K., & Moeller, K. (2019). Anticipation of difficult tasks: Neural correlates of negative emotions and emotion regulation. Behavioral and Brain Functions. https://doi.org/10.1186/s12993-019-0155-1

Lim, K. H. (2007). Students’ mental acts of anticipating in solving problems involving algebraic inequalities and equations. Dissertation Abstracts International Section A: Humanities and Social Sciences, 67(7-A), 2501. Retrieved from http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc5&NEWS=N&AN=2007-99001-146

Maswar. (2019). Profil antisipasi siswa SMP/MTs dalam memecahkan masalah aljabar ditinjau dari kemampuan matematika. Indonesian Journal of Matheamatics and Natural Science Education, 1(1), 37–52.

Moragues-Faus, A., Sonnino, R., & Marsden, T. (2017). Exploring european food system vulnerabilities: Towards integrated food security governance. Environmental Science and Policy. https://doi.org/10.1016/j.envsci.2017.05.015

Rohmah, L. H. (2017). Profil antisipasi siswa dalam memecahkan masalah aljabar ditinjau dari kecerdasan linguistik dan kecerdasan logis-matematis (Universitas Islam Negeri Sunan Ampel Surabaya; Vol. 8). Universitas Islam Negeri Sunan Ampel Surabaya. https://doi.org/10.26740/mathedunesa.v8n3.p559-568

Rosen. (2010). Robert Rosen’s anticipatory systems. Foresight, 12(3), 18–29. https://doi.org/10.1108/14636681011049848

Stepp, N., & Turvey, M. T. (2010). On strong anticipation. Cognitive Systems Research. https://doi.org/10.1016/j.cogsys.2009.03.003

Sunardi. (2006). Implementasi prinsip-prinsip KBM dalam KBK dalam pembelajaran matematika SD. Makalah disajikan dalam seminar pendidikan matematika. Olimpiade Matematika SD/MI Se-Jawa Timur, 1–10. Jember: FKIP, Universitas Jember.

Sunardi, S., & Yudianto, E. (2016). Antisipasi siswa level analisis dalam menyelesaikan masalah geometri. AdMathEdu : Jurnal Ilmiah Pendidikan Matematika, Ilmu Matematika Dan Matematika Terapan, 5(2). https://doi.org/10.12928/admathedu.v5i2.4776

Sunardi, & Yudianto, E. (2015). Antisipasi siswa level analisis dalam menyelesaikan masalah geometri. Jurnal AdMathEdu, 5(2), 203–216.

Sunardi, Yudianto, E., Susanto, Kurniati, D., Cahyo, R. D., & Subanji. (2019). Anxiety of students in visualization, analysis, and informal deduction levels to solve geometry problems. International Journal of Learning, Teaching and Educational Research, 18(4). https://doi.org/10.26803/ijlter.18.4.10

Ulmer, M. W. (2017). Anticipation. In Operations Research/ Computer Science Interfaces Series. https://doi.org/10.1007/978-3-319-55511-9_5

Usiskin, Z. (1982). Van Hiele levels and achivements in secondary school geometry (p. 227). p. 227. Chicago, IL: University of Chicago. https://doi.org/10.1017/CBO9781107415324.004

Yudianto, E., Trapsilasiwi, D., Sunardi, Suharto, Susanto, & Yulyaningsih. (2019). The process of student’s thinking deduction level to solve the problem of geometry. Journal of Physics: Conference Series, 1321(2). https://doi.org/10.1088/1742-6596/1321/2/022078

Yudianto, E. (2015a). Karakteristik antisipasi impulsif siswa dalam memecahkan soal integral. In Suharto (Ed.), Prosiding Seminar Nasional Pendidikan dan SAINS Program Studi Pendidikan Matematika FKIP Universitas Jember: Mengembangkan Keterampilan Berpikir Tingkat Tinggi melalui Pendekatan Edutaiment dan Edupreneurship dalam Menyongsong Masyarakat Ekonomi ASEAN (pp. 109–116). Jember: FKIP UNEJ.

Yudianto, E. (2015b). Profil antisipasi siswa SMA dalam memecahkan masalah integral. Kreano, 6(1), 21–25. https://doi.org/http://dx.doi.org/10.15294/kreano.v6i1.4472

Yudianto, E. (2017). Antisipasi ide kreatif mahasiswa level rigor dalam menentukan algoritma benda ruang menggunakan maple. Jurnal Didaktik Matematika, 4(2), 98–106. Retrieved from http://www.jurnal.unsyiah.ac.id/DM/article/view/8369

Yudianto, E. (2019). Pengantar teori fraktal dan aplikasinya. Jember: CV. Pustaka Abadi.

Yudianto, E. (2021). Anticipation of student ideas in designing sierpinsky square batik using maple. Jurnal of Medives, 5(1), 189–200.

Yudianto, E, & Sunardi. (2015). Antisipasi siswa level analisis dalam menyelesaikan masalah geometri. AdMathEdu, 5(2), 203–216.




DOI: https://doi.org/10.24815/jdm.v8i1.19954

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Sunardi Sunardi, Titik Sugiarti, Feny Rita Fiantika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Jurnal Didaktik Matematika

ISSN 2355 – 4185 (print) | 2548 – 8546 (online)

Published by:

Master Program of Mathematics Education incorporated with Himpunan Matematika Indonesia (Indonesian Mathematical Society/IndoMs)

Faculty of Teacher Training and Education

Universitas Syiah Kuala

Darussalam, Banda Aceh, Indonesia - 23111

Website : http://jurnal.unsyiah.ac.id/DM/ 
Email     : jurnal.jdm@unsyiah.ac.id 

Creative Commons License

Jurnal Didaktik Matematika by Program Studi Magister Pendidikan Matematika FKIP Universitas Syiah Kuala is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://jurnal.unsyiah.ac.id/DM