Hypothetical Learning Trajectory (HLT) for Fraction of Blind Students Using Braille Media Fraction Block

Riza Agustiani, Agustiany Dumeva Putri

Abstract


Fraction is one of the difficult topics for students with visual impairments. Therefore, it is necessary to develop a learning trajectory that can help the students understand fractions. This design research aims to describe the design process of hypothetical learning trajectory for the addition of fractions using braille fraction blocks. This research is divided into three stages: the preparation for the experiment (design), the implementation of the teaching experiment, and the retrospective analysis. Data collection techniques employed in this research were walkthrough, observation, interview, and test. The product of this research is hypothetical learning trajectory (HLT) for the addition of fractions that contains the following activities: comparing unit block and fraction blocks, comparing the size of different fraction blocks to get the same size fraction blocks (equal fraction), comparing the sizes of two fraction blocks, adding fraction blocks, and determining the fraction block with the same size as the added fraction block. Those five activities were carried out in the two-cycle experimental activities. After the implementation of the activities, the students' answers to exercises showed that the research subjects could add fractions, either with the same denominators or different denominators.

Full Text:

PDF

References


Agustiani, R. (2015). Profil pengetahuan pedagogik konten mahasiswa calon guru matematika dalam melaksanakan pembelajaran dengan pendekatan PMRI. Jurnal Pendidikan Matematika RAFA, 1(2), 288–305.

Agustiani, R. (2016). Pengembangan cerita pendek (cerpen) matematika untuk pembelajaran matematika materi penjumlahan pecahan berpenyebut sama. Jurnal Pendidikan Matematika RAFA, 2(2), 161–180.

Agustiani, R., & Nursalim, R. (2020). Hypothetical learning trajectory (HLT) for proof logic topics on algebra course: What’re the experts think about? Al-Jabar: Jurnal Pendidikan Matematika, 11(1), 101–110.

Agustina, A., & Zulkardi. (2020, February). Designing reasoning problem of linear equations with two variables through compare and exchange activities. In Journal of Physics: Conference Series (Vol. 1470, No. 1, p. 012062). IOP Publishing.

Anggraini, Y., Afgani, M. W., & Agustiani, R. (2020). Kemampuan menghitung perkalian bilangan asli dari 1 sampai dengan 10 pada siswa tunanetra menggunakan media tabel perkalian Braille (Thesis, UIN Raden Fatah Palembang).

Anwar & Rofiki, I. (2018, September). Investigating students’ learning trajectory: a case on triangle. In Journal of Physics: Conference Series (Vol. 1088, No. 1, p. 012021). IOP Publishing.

Bakker, A., & Van Eerde, D. (2015). An introduction to design-based research with an example from statistics education. In Approaches to qualitative research in mathematics education (pp. 429-466). Springer, Dordrecht.

Bruce, C., Chang, D., Flynn, T., & Yearley, S. (2013). Foundations to learning and teaching fractions: Addition and subtraction. Retrieved July 4, 2014.

Gembong, S. (2020, June). The scheme construction to solve the adding fractions problems using images conducted by elementary students. In Journal of Physics: Conference Series (Vol. 1567, No. 4, p. 042030). IOP Publishing

Gravemeijer, K., & Terwel, J. (2000). Hans Freudenthal: a mathematician on didactics and curriculum theory. Journal of curriculum studies, 32(6), 777-796.

Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. Educational design research, 1, 17.

Gravemeijer, K. P. E. (2016). Design-research-based curriculum innovation. Quadrante, 25(2), 7–23.

Hadi, S. (2017). Pendidikan matematika realistik teori, pengembangan dan implementasinya (edisi revisi). Jakarta: Rajawali Pers.

Jannah, A. F., & Prahmana, R. C. I. (2019). Learning fraction using the context of pipettes for seventh-grade deaf-mute student. Journal for the Education of Gifted Young Scientists, 7(2), 299-321.

Kania, N. (2018). Alat peraga untuk memahami konsep pecahan. Jurnal THEOREMS (The Original Research of Mathematics), 2(2), 1-12.

Meryansumayeka, M., Darmawijoyo, D., Putri, R.I.I., & den Hertog, J. (2011). Structured arrangement supporting the development of splitting level in doing multiplication by number up to 20. IndoMS. JME, 2(2), 199-214.

Moleong, L. J. (2019). Metodologi penelitian kualitatif (Edisi Revisi). Bandung: Rosdakarya.

Nasution, M. F., & Putri, R. I. I. (2018). Rowing sport in learning fractions of the fourth-grade students. Journal on Mathematics Education, 9(1), 69-80.

Nurfadillah, H. (2015). Keefektifan media model “bola pecahan” terhadap kemampuan pemahaman konsep pecahan pada siswa tunanetra kelas III di sekolah luar biasa-Yaketunis Yogyakarta. Widia Ortodidaktika, 4(4), 1-14.

Oktaria, R., Afgani, M. W., & Agustiani, R. (2019). Penggunaan lingkaran braille untuk melatih kemampuan pemahaman konsep siswa tunanetra pada bilangan pecahan (Thesis, UIN Raden Fatah Palembang).

Prahmana, R. C. I. (2017). Design research (Teori dan implementasinya: Suatu pengantar). Jakarta: Rajawali Pers

Pratama, A. R., & Saputro, D. R. S. (2018, April). Problem solving of student with visual impairment related to mathematical literacy problem. In Journal of Physics: Conference Series (Vol. 1008, No. 1, p. 012068). IOP Publishing.

Putri, R. I. I., & Gunawan, M. S. (2017, December). Addition of fraction in swimming context. In Journal of Physics: Conference Series (Vol. 943, No. 1, p. 012035). IOP Publishing.

Sary, R. F. (2015). Pendekatan PMRI dengan konteks pempek dalam memahami konsep pecahan senilai di Sanggar Belajar Soekarno Palembang.

Saputri, A. E., & Wangid, M. N. (2013). Pembelajaran sains SD untuk siswa tunanetra di SLB-A Yaketunis. Jurnal Prima Edukasia, 1(2), 124-134.

Sembiring, R. K. (2010). Pendidikan matematika realistik Indonesia (PMRI): Perkembangan dan tantangannya. Indonesian Mathematical Society Journal on Mathematics Education, 1(1), 11-16.

Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: An elaboration of the hypothetical learning trajectory. Mathematical thinking and learning, 6(2), 91-104.

Susanti, D. J., & Rudiyati, S. (2019, April). Learn writing and reading braille for elementary student with visual impairment: a systematic review. In International Conference on Special and Inclusive Education (ICSIE 2018) (pp. 176-180). Atlantis Press.

Wright, V. (2014). Towards a hypothetical learning trajectory for rational number. Mathematics education research journal, 26(3), 635-657.

Zabeta, M., Hartono, Y., & Putri, R. I. I. (2015). Desain pembelajaran materi pecahan menggunakan pendekatan Pendidikan Matematika Realistik Indonesia (PMRI). Beta: Jurnal Tadris Matematika, 8(1), 86-99.




DOI: https://doi.org/10.24815/jdm.v8i1.18138

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Riza Agustiani, Agustiany Dumeva Putri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Jurnal Didaktik Matematika

ISSN 2355 – 4185 (print) | 2548 – 8546 (online)

Published by:

Master Program of Mathematics Education incorporated with Himpunan Matematika Indonesia (Indonesian Mathematical Society/IndoMs)

Faculty of Teacher Training and Education

Universitas Syiah Kuala

Darussalam, Banda Aceh, Indonesia - 23111

Website : http://jurnal.unsyiah.ac.id/DM/ 
Email     : jurnal.jdm@unsyiah.ac.id 

Creative Commons License

Jurnal Didaktik Matematika by Program Studi Magister Pendidikan Matematika FKIP Universitas Syiah Kuala is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://jurnal.unsyiah.ac.id/DM